As-Built/Monitoring Year 1 Report

LITTLE BUGABOO CREEKWilkes County, North Carolina

Submitted to: NCDENR-EEP Address: 1652 Mail Service Center Raleigh, NC 27699-1652

June 2005

EARTHTECH

701 Corporate Center Drive Suite 475 Raleigh, NC 27607

Table of Contents

1.0	EXECUTIVE SUMMARY/PROJECT ABSTRACT	2
2.0	PROJECT BACKGROUND	
2.1	Project Location	
2.2		
2.3	Project History and Background	
3.0	VEGETATION CONDITIONS AND MONITORING RESULTS	
3.1	Vegetation Monitoring Protocol	15
3.2	Soil Data	15
3.2	Vegetative Problem Areas	16
. 3	3.3 Stem Counts	22
3	3.4 Vegetation Plot Photos	22
3.5		
4.0	STREAM CONDITIONS AND MONITORING RESULTS	24
4.1	Stream Monitoring Protocol	24
4.2		
4.3	Quantitative Morphology, Results and Discussion	26
	Figures	
Figu	ure 1: Location Map	3
	ure 2a: Plan View of As-Built Conditions and Monitoring Year 1	
Figu	ure 2b: Plan View of As-Built Conditions and Monitoring Year 1	11
Figu	ure 2c: Plan View of As-Built Conditions and Monitoring Year 1	12
Figu	ure 2d: Plan View of As-Built Conditions and Monitoring Year 1	13
Figu	ure 2e: Plan View of As-Built Conditions and Monitoring Year 1	14
Figu	ure 3a: Problem Areas Plan View	17
_	ure 3b: Problem Areas Plan View	
Figu	ure 3c: Problem Areas Plan View	19
Figu	ure 3d: Problem Areas Plan View	20
Figu	ure 3e: Problem Areas Plan View	21

Tables

Exhibit Table I. Project Structure Table	6
Exhibit Table II. Project Objectives Table	
Exhibit Table III. Project Activity and Reporting History	
Exhibit Table IV. Project Contact Table	
Exhibit Table V. Project Background	9
Exhibit Table VI. Preliminary Soil Data	
Exhibit Table VIIa. Vegetative Problem Areas Little Bugaboo Creek*	
Exhibit Table VIIb. Vegetative Problem Areas UT to Little Bugaboo Creek	16
Exhibit Table VIII. Stem Counts for each species arranged by plot	23
Exhibit Table IXa. Stream Problem Areas Little Bugaboo Creek	25
Exhibit Table IXb. Stream Problem Areas UT Little Bugaboo Creek	
Exhibit Table X. Not included in this report	
Exhibit Table XIa. Baseline Morphology and Hydraulic Summary	27
Exhibit Table XIb. Baseline Morphology and Hydraulic Summary	
Exhibit XIIa. Baseline Morphology and Hydraulic Summary for LBC	29
Exhibit XIIb. Baseline Morphology and Hydraulic Summary for UT	30

Appendices

Appendix A: Raw Vegetation Data, Vegetation Photo Log, and Problem Area Photo Log Appendix B: Raw Stream Survey Data and Stream Cross-Section Photo Log

1.0 EXECUTIVE SUMMARY/PROJECT ABSTRACT

The Ecosystem Enhancement Program (EEP) formally the North Carolina Wetlands Restoration Program (NCWRP) identified Little Bugaboo Creek (LBC) and an Unnamed Tributary to Little Bugaboo Creek (UT) as potential stream restoration sites in 2002. Existing conditions were surveyed and a restoration design was developed based upon the conditions of the channels, reference reaches, and goals of the project. The existing channel was severely eroding due to unlimited cattle access and a lack of vegetation. The farmers who owned the sections of the restoration project were concerned about losing valuable farmland. The design involved a Priority Level II restoration and LBC and the UT were designed to be Rosgen stream type "C". Section 2.0 describes in more detail the project background with Tables summarizing the goals, objectives, history, background, and contact information. This report serves as the as-built report and the first year of the 5-year monitoring plan for the Little Bugaboo Creek Stream Restoration project.

The vegetation described in more detail in section 3.0 does not meet mitigation requirements. The stem count data collected indicates high tree mortality at the sixteen vegetation plots. Woody vegetation restoration within the riparian buffer of Little Bugaboo Creek and the UT is considered unsuccessful. On the main channel five of the eleven plots were significantly disturbed because of repair activities. The plots disturbed by channel repairs were replanted, but plantings appeared concentrated closer to the channel. The disturbed conditions and planting patterns may have contributed to lower planting densities in these plots. Along the UT, four of the five plots were described as significantly wet or very wet. Only one of the wet plots has greater than 50% of the expected stems. One of the plots had a significant stand of black willows from natural regeneration. Other factors besides the repair work that could explain why the vegetation was not successful at this site include: drought/flashy flows; improper application (seeding, fertilizer, planting or timing) of vegetation seeds and stems; and mowing/grazing by cattle and farmer due to no fence in several locations. Recommendations include replanting trees to obtain mitigation requirements and controlling exotic species in the future.

The stream channel described in more detail in Section 4.0 has significant areas of bank erosion. These areas of erosion may be due to any of the following: lack of vegetation, improper installation and/or design of structures, stream design dimensionless ratios, the inner berm was not constructed as according to the plans for typical cross-sections, and overland flow/drainageways entering the stream channel. Twelve cross-sections were surveyed and pebble counts were performed at each cross-section. Two representative longitudinal profiles were surveyed along LBC and one along the UT. It is recommended that vegetation needs to be planted to help stabilize the stream banks and the major problem areas need to be watched over time to see if repair work is needed.

2.0 PROJECT BACKGROUND

The background information for this report is referenced from the restoration plan conducted by Earth Tech, Inc. The following was excerpted from the 2002 Little Bugaboo Creek Stream Restoration Plan report sections 1.1 and 2.1.1.

The Wilkes County Soil and Water Conservation District (WCSWCD) staff first identified LBC as a potential restoration site through their work with farmers throughout the county. The landowners main concern at that time was the loss of valuable farmland due to actively eroding streambanks. Un-restricted cattle access to the stream and the removal of vegetation along the banks by grazing were the main causes of degradation. Lands adjacent to the streams were being

used for cattle production and the spreading of chicken litter. Prior to restoration, the pastures adjacent to the stream consisted of fescue with sparse trees along drainages. Most streambanks were vertical with little or no vegetation and were actively eroding. There were numerous signs of lateral meander migration. Prior to restoration, the main channel classified as a Rosgen 'F' type system where the channel had downcut and was eroding its banks to establish a floodplain at the new channel elevation. The existing channel appeared to be in a state of transition. Streambanks were very unstable and meanders were continuing to migrate, creating a wider floodplain as necessary to reach stability.

The combination of extreme streambank erosion, degraded vegetation, poor cattle management practices, and willing landowners mad this an excellent restoration site. Restoration required determining how far the stream had departed from its natural stability and then establishing the stable form of the stream under the current hydrologic conditions within the drainage area. The restoration involved constructing a stable meander geometry, modifying channel cross-sections, and establishing a floodplain at the existing stream elevation, thus, restoring a stable dimension, pattern, and profile. This restoration was based on analysis of current watershed hydrologic conditions, field evaluation of the project site, and assessments of stable reference reaches. LBC was designed as a Rosgen type "E" channel and the UT was designed as a Rosgen type "C" channel.

A tributary to the Roaring River, Little Bugaboo Creek is located on agricultural land northeast of the town of Roaring River in Wilkes County, North Carolina (Figure 1). The headwaters of the project originate approximately 3 miles to the north-northwest of the restoration site. From the headwaters, LBC flows for approximately 4 miles before joining with Big Bugaboo Creek. An Unnamed Tributary to Little Bugaboo Creek enters LBC at the end of the project site and was included in the restoration project. The headwaters for the UT originate approximately 1.6 miles from the restoration site. From the headwaters, the UT flows for approximately 2.5 miles before the confluence with LBC. Several tributaries enter LBC along its extent.

The Priority II restoration involved increasing the existing streams length and providing a floodplain. Cross-vanes and rootwads were incorporated for aquatic habitat enhancement and bed and bank stability. A 50-foot riparian buffer on either side of the stream was planted with native vegetation.

2.1 Project Location

The Little Bugaboo Creek (LBC) project site is located in Wilkes County, North Carolina. Roaring River is located 7 miles east, northeast of North Wilkesboro. The project is contained within the property of five landowners. LBC flows northwest to southeast, and the UT flows north to south. The project reach is bound to the north by Tharpe Road (S.R. 2014) and to the south by Hoots Road (S.R. 1924).

Directions to Little Bugaboo Creek Stream Restoration

Between Yadkinville and Wilkesboro off of Highway 421 West turn onto Red, White, and Blue Road. Follow Red, White, and Blue Road to the stop sign at Old NC 60 road (Mathis Mill Road). Turn left at the stop sign and follow Old NC 60 about 200 yards and turn right on Roaring River Road. (Note: this section of road is currently being realigned. In future Mathis and Roaring River Road will be joined.) Old NC 60 crosses over the Roaring River and railroad tracks then at a t-intersection with Highway 268 turn right. After 200 yards turn left onto White Plains Road.

Follow White Plains Road for about 3 miles then turn right onto North Hoots Road. After 200 yards turn left into driveway with chicken houses (Woody Farms).

2.2 Goals and Objective

Little Bugaboo Creek was enhanced/restored through the North Carolina Ecosystem Enhancement Program (NCEEP). Exhibit Table I and Table II summarizes the goals and objectives of the project.

Exhibit Table I. Pro	ject Structure Table
Project Number and Name: S	SCO# 00-5327-01A (LBC/UT)
Segment/Reach ID	Linear Feet
Little Bugaboo Creek	4,276 lf
UT to Little Bugaboo	1,954 If

	Exhibit Table II. Project Objectives Table Project Number and Name: SCO# 00-5327-01A (LBC/UT)	
Segment/Reach ID	Objectives	Linear Feet or Acreage	Comment
	Restore 4,276.4 linear feet of Little Bugaboo Creek (as measured along the thalweg)		
	Provide a stable stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport its watershed's water and sediment load		
Little Bugaboo	Improve water quality and reduce further property loss by stabilizing eroding stream banks	4,276 lf	
Creek	Reconnect the stream to its floodplain or establish a new floodplain at a lower elevation		
	Improve aquatic habitat with the use of natural material stabilization structures such as root wads, rock vanes, woody debris and a riparian buffer		
	Provide aesthetic value, wildlife habitat and bank stability through the creation or enhancement of a riparian zone		
			I
	Restore 1,954 linear feet along the tributary (as measured along the thalweg);		
	Provide a stable stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport its watershed's water and sediment load		
UT to Little	Improve water quality and reduce further property loss by stabilizing eroding stream banks	1.954 lf	
Bugaboo Creek	Reconnect the stream to its floodplain or establish a new floodplain at a lower elevation	1,934 11	
	Improve aquatic habitat with the use of natural material stabilization structures such as root wads, rock vanes, woody debris and a riparian buffer		
	Provide aesthetic value, wildlife habitat and bank stability through the creation or enhancement of a riparian zone		

2.3 Project History and Background

The Little Bugaboo Creek restoration site begins approximately 4,420 feet from the confluence of LBC and UT. The project also includes the restoration of 1,954 feet of an unnamed tributary (UT). The project is located within the property boundaries of five different landowners. LBC flows from northwest to southeast through a 200 to 400-foot wide floodplain that narrows to less than 100-feet for the last 1,500-feet of the project. The UT flows from north to south through a 100 to 150-foot wide valley. The UT is much straighter than LBC, although both show signs of increasing their sinuosity over time.

Historically, a mill and dam were located about 150-feet below the confluence of LBC and UT. The milldam backed up water within approximately half of the project length (believed to be about elevation 1,107 feet). Both streams had incised down to bedrock through the alluvial sediments of the historic pond. The dam was removed near the beginning of the 20th century. It is not known when the dam was constructed.

Landuse throughout the restoration site is predominantly agricultural land presently being used for cattle production and the spreading of chicken litter. Fences within the project area divide pastureland but did not restrict cattle access to the streams and drainages for a majority of the site prior to restoration. LBC is bound upstream and downstream by bedrock outcroppings that result in significant (greater then 10-feet of fall) waterfalls. The UT is bound upstream by an outcropping of bedrock and downstream by the confluence with LBC. The lower 1,600 feet of LBC and 450 feet of the UT did have fencing along one side of each respective stream prior to restoration, which restricted cattle access.

The causes of impairment throughout the restoration site were:

- Cattle access to the stream and riparian areas;
- Incision partially due to aggradation of material from the historic milldam below the end of the project limits;
- Indications of previous channelization along the reach; and
- Removal of riparian vegetation.

Cattle access to the stream and riparian areas directly resulted in streambank erosion prior to restoration. Continual grazing limited the ability of vegetation to reestablish itself along the majority of the stream. Dense rooting vegetation along the stream banks was extremely sparse for large lengths of the stream. Additional degradation resulted from historic channelization of the streams and tributaries. In an effort to maximize available land for chicken litter spreading, landowners had straightened sections of LBC. This increased the channel slope and significantly modified the channel dimension, pattern, and profile. The downstream portions of both reaches were deeply incised partially due to the alluvial sediments that deposited during the existence of the downstream milldam. After the milldam was removed, a head cut worked up from the mill site through the deposited sediments.

Exhibit Table III summarizes the project activity with the year of planned completion and actual completion. This table will need to be updated for each additional year of monitoring after year 1. Exhibit Table IV gives the project contact information for designer, contractors, and who performed the monitoring. Exhibit Table V summarizes the background information for the project. The design involved a Priority Level II restoration and LBC and the UT were designed to be a Rosgen stream type "C". Figures 2a-2e detail the proposed plan view for the streams

pattern and locations of structures for the original design and the repair work completed on LBC and the UT.

Exhibit Table III. Project Activity and Reporting History Project Number and Name: SCO# 00-5327-01A (LBC and UT)								
Activity or Report	Calendar Year of Completion of Planned Completion	Actual Completion Date						
Restoration Plan	2002	2002						
Mitigation Plan	2005	2005						
Construction	2003	2003/2004						
Temporary S&E mix applied to entire project area	2003/2004	2003/2004						
As-Built Report	2004	2005						
Permanent seed mix applied	2004	2004						
Containerized and B&B plantings	2004	2004						
Structural maintenance	2004	2004						
Initial - Year 1 Monitoring	2004	2005						
Year 2 Monitoring	2006							
Year 3 Monitoring	2007							
Supplemental Planting of containerized material								
Year 4 Monitoring	2008							
Year 5 Monitoring	2009							

Exhibit Table IV. Project Contact Table							
Project Number and Name: SO	CO# 00-5327-01A (LBC and UT)						
Designer POC	Earth Tech of NC, Inc 701 Corporate Center Drive, Suite 475 Raleigh, NC 27607 Jan Patterson P.E. 919-854-6246						
Construction Contractor POC	Dixie Grading and Equipment Company 5228 W. US HWY 421 Wilkesboro, NC 28697 Randall Miles 336-973-7281						
Planting Contractor POC	Carolina Environmental P.O. Box 99 Booneville, NC 277 Joanne Cheetam 919-868-2807						
Seeding Contractor POC	Carolina Environmental P.O. Box 99 Booneville, NC 277 Joanne Cheetam 919-868-2807						
Seed Mix Sources	Unknown						
Nursery Stock Suppliers	Unknown						
Monitoring Performers	Earth Tech of NC, Inc						
Stream Monitoring	Amanda Todd 919-854-6251						
Vegetation Monitoring	George Lankford 919-854-6248						

Exhibit Table V. Project B	ackground						
Project Number and Name: SCO# 00-5327-01A (LBC and UT)							
Project County	Wilkes						
Drainage Area	3.45/1.4						
Drainage impervious cover estimate (%)	2%						
Stream Order	2nd/1st						
Physiographic Region	Piedmont (foothills)						
Ecoregion	N. Inner Piedmont						
Rosgen Classification of As-Built	С						
Cowardin Classification	Riverine						
Dominant Soil Types	Chewacla and Rion						
Reference site ID	Basin Creek						
USGS HUC for Project	03040101						
USGS HUC for Reference	05050001						
NCDWQ Sub-basin for Project	030701						
NCDWQ Sub-basin for Reference	030701						
NCDWQ Classification for Project	C						
NCDWQ Classification for Reference	UNKNOWN						
Any portion of any project segment 303D listed?	NO						
Any portion of any project segment upstream of a 303D listed segment?	NO						
Reasons for 303D listing or stressor	N/A						
% of project easement fenced	50%						

70! Corporate Center Drive, Suite *475; Raielgh, NC Phone: (9!9) 854-6209 Fax: (9!9) 854-6259

AS-BUILT CONDITIONS MONITORING IGURE 2E

LITTLE BUGABOO CREEK STREAM MONITORING WILKES COUNTY ECOSYSTEM ENHANCEMENT PROGRAM

02/11/2005 PROJECT NO 53675

FILENAME

SHEET NO DRAWN BY

CRB

3.0 VEGETATION CONDITIONS AND MONITORING RESULTS

Year 1 monitoring in 2005 and as-built results are described in detail within the following sections for vegetation results for Little Bugaboo Creek and the UT. Section 3.1 discusses the vegetation monitoring, Section 3.2 discusses soil conditions, Section 3.3 describes the vegetation problem areas with summary tables and plan views that is followed in Section 3.4 with results and discussions. One figure (Figure 3a-e) was used to describe the problem areas with the stream and vegetation since the eroded streambanks were at least partially due to a lack of vegetation.

3.1 Vegetation Monitoring Protocol

The following describes the results of the 2005 as-built vegetation monitoring conducted at the Little Bugaboo Creek Stream Restoration Site. Sampling and analysis methods follow guidelines issued by North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program (EEP Version 2/21/05).

Stem counts were conducted on 16 representative plots placed throughout the entire site, 11 plots along the main channel and 5 plots along the tributary. All plot sizes are 10m x 10m (32.8 feet x 32.8 feet). A total area of 1,600 square meters was sampled at this site for 5% of the site. Two opposite corners were permanently marked with metal conduit (Figure 2a-e). No contiguous plot configurations were used. Stems were counted only for planted and transplanted woody vegetation within each plot. For shrubby species with multiple branching stems, the base is considered one stem. Trees with two or more main stems branching from the base or near the ground are considered one stem.

Initial stem counts were conducted on April 4-5, 2005. All woody stems in plots were marked with orange survey flagging. Some difficulty was encountered in identifying species because of lack of leaves and small and/or damaged stems. Characteristic buds were often difficult to identify.

3.2 Soil Data

Preliminary soil data was taken from the Soil Survey of Wilkes County North Carolina (1997).

Exhibit Table VI. Preliminary Soil Data									
Series	Max Depth (in.)	% Clay in Surface Horizon		T	OM % (Surface)				
CkA - Chewacla loam - 0 to 2% frequently flooded	60	10 - 25	5	5	1 - 4				
RnE - <i>Rion</i> fine sandy loam – 15 to 20% slope	40 (over saprolite)	5 - 20	3	3	0.5 - 2				

3.2 Vegetative Problem Areas

There were numerous areas throughout the project on LBC that lacked vegetation on the banks. The UT had only a few minor problem areas. Exhibit Table VII describes the vegetative problem areas (which also correspond to the stream bank erosion areas) with the approximate station number or distance, probable cause, and photo number. Exhibits 3a-e show the problem area reference to station numbers and Appendix A gives photo numbers.

/Range	me: SCO# 00-5327-01A (Little Bugaboo Cree Probable Cause rootwads	k) Photo #
	rootwads	Photo #
1 50		
	, (I	1
	stormflow convergence	2
1+50	stormflow convergence	3
	back eddy below cross-vane	4
	back eddy behind rootwads and incoming flow	
2+00	from tributary	5
	unknown	6
	overland flow/small drainageway	7
	cross-vane	8
	overland flow	9
	eroding drainageway, overland flow	10
	unknown	11
	cross vane	12
	cross-vane	13
	overland flow/cross vane	14
	Unknown	
		unknown cross vane cross-vane overland flow/cross vane

^{*}In general, banks, bars, and floodplain are lacking significant vegetation. However, vegetation between station 40+00 and 46+00 is relatively stable due to minimal disturbance during construction.

Exhibit Tab	Exhibit Table VIIb. Vegetative Problem Areas UT to Little Bugaboo Creek									
Project Number and Name: SCO# 00-5327-01A (UT Little Bugaboo Creek)										
Feature/Issue	Feature/Issue Station #/Range Probable Cause									
Bare Bank	15+25	Overland flow and eddies around rootwads	2							
	17+80	Erosion below cross-vane, angle of vane	3							
	23+80	Erosion upstream of vane, tight bend	4							
Bare Bench										
Bare Floodplain										
Invasive/Exotic Populations										

PROBLEM AREAS PLAN VIEW FIGURE 3C

DATE 02/11/2005

DRAWN BY

LITTLE BUGABOO CREEK STREAM MONITORING WILKES COUNTY ECOSYSTEM ENHANCEMENT PROGRAM PROBLEM AREAS PLAN VIEW FIGURE 3E

DATE 02/11/2005 PROJECT NO 53675

SHEET NO

DRAWN BY

3.3 Stem Counts

The stem count indicates high tree mortality across the site (Exhibit Table VIII). The planting plan indicated a planting density of 800 stems per acre (200 canopy, 300 sub canopy, and 300 shrubs). The plots average only 50 % of the expected density and many plots were significantly lower. Plot 113 had 10 % of the specified density. Only two plots have greater than 80 % of the specified density, one located along the main channel and one along the tributary. A total of eight tree species and four shrub species were observed.

3.4 Vegetation Plot Photos

A representative photo of each plot was taken at the time of the stem count (Appendix A). Each photo was taken from the downstream corner closest to the channel and facing toward the opposite corner.

3.5 Results and Discussion

Woody vegetation restoration within the riparian buffer of Little Bugaboo Creek and the UT is considered unsuccessful. On the main channel, five of the eleven plots were significantly disturbed because of repair activities. Another contained 30% bare soil and may have been mowed by the farmer recently. The plots disturbed by channel repairs were replanted, but plantings appeared concentrated closer to the channel. The disturbed conditions and planting patterns may have contributed to lower planting densities in these plots. All but one of the plots along the main channel had less than expected densities for both disturbed and undisturbed areas. This plot is significantly sheltered by a clump of trees and by the steeper slope to the south. Although the smallest seedlings were considered to be from natural regeneration, it is possible that some counted stems were also from seed regeneration.

Along the tributary, four of the five plots were described as significantly wet or very wet. Only one of the wet plots has greater than 50% of the expected stems. The source of moisture appears to be toe slope seepage. The wet plots are all dominated by common rush (*Juncus effusus*) and sedges (*Carex* spp). Plot 112 has a significant stand of black willow from natural regeneration.

Three tree species counted were observed only along LBC and not in the plots along the UT. These species include box elder (*Acer negundo*), serviceberry (*Amelanchier arborea*), and American holly (*Ilex opaca*). Of the trees present, green ash (*Fraxinus pennsylvanica*) and sycamore (*Platanus occidentalis*) were the most common having greater than 10% of the total planted. The most common shrubs, tag alder (*Alnus serrulata*) and red chokeberry (*Aronia arbutifolia*) were the most common but were less than 10% of the total planted. Invasive plant species on the site included privet (*Ligustrum sinense*) and multiflora rose (*Rosa multiflora*). Neither species were observed in more than two plots and at low densities. Both are of concern due to their potential for prolific spreading and degradation of habitat. Adjacent to the tributary along the existing pasture edge is a dense border of privet. This will provide an ongoing source of seeds to invade this site.

Recommendations include replanting trees to obtain mitigation requirements. Natural regeneration can obviously play an important role in the restoration of this site; however, more trees are needed to meet mitigation requirements. Although invasive vegetation is not currently a problem, the potential for rapid invasion of exotics is present. Upstream and adjacent to the site are large populations of privet.

	Exhibit Table VIII. Stem Counts for each species arranged by plot																			
	Species		Plots											1	Year 1 Totals	Survival %				
			Main Channel Tributary																	
		101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116			
Shrubs																				
Alnus serrulata	Tag Alder				1		1			1		4	4	1			4	16		
Viburnum nudum	Possumhaw Viburnum		2	3	1	1			1	1		1					2	12		
Sambucus canadensis	Elderberry		2		1				1			1		1		2		8		
Aronia arbutifolia	Red Chokeberry					1			2	2	3	3			2			13	v.	
		L						norrambaina	met/invication/color											
Trees																				
Acer negundo	Box Elder	1									3							4		
Amelanchier arborea	Serviceberry	1		2	1		1	1	1									7		
Diospyros virginiana	Persimmon			3		1			1	1					2			8		
llex opaca	American Holly			2														2		
Quercus alba	White Oak		2		1	1	1	1	1				1		1		4	13		
Fraxinus pennsylvanica	Green Ash	1	2	1	3	3	2	1			7	1	1		1	1	2	26		
Juglans nigra	Black Walnut	1	1	2	3	1			1	1	1					2	1	14		
Platanus occidentalis	Sycamore	5	3	1		2	1	1	2	1	5	2	7		1		7	38		
	Total Stems of planted Woody vegetaion.	9	12	14	11	10	6	4	10	7	19	12	13	2	7	5	20	161		
				1																I
																		Average		
	percent of expected*	0.45	0.60	0.70	0.55	0.50	0.30	0.20	0.50	0.35	0.95	0.60	0.65	0.10	0.35	0.25				
	current density stems/ac	365	486	567	446	405	243	162	405	283.5	770	486	527	81	284	203		Average 408		

^{*} based on 20 expected stems per plot (800 stems per acres)

4.0 STREAM CONDITIONS AND MONITORING RESULTS

The restored channels dimension, pattern, profile, and substrate were examined during the 2005 as-built survey and year 1 monitoring period in April 2005. The monitoring protocol is described in Section 4.1 and the problem areas are described in Section 4.2. Section 4.3 includes tables that summarize the morphological data collected. Results and discussion follow in Section 4.4 for the stream portion of the project.

4.1 Stream Monitoring Protocol

Eleven cross-sections were surveyed along the main channel and two longitudinal profiles were surveyed. On the UT, four cross-sections were surveyed and one longitudinal. The locations of these cross-sections are shown on Figures 2a-e. Cross-Sections were established at representative riffles and pools (1good and 1 bad area for each longitudinal survey). Cross-sections were established at one per 1,000 feet, which totaled eight on LBC, and four on the UT. Data for the cross-sections and longitudinal survey are included in Appendix B. Pebble Counts were performed at each cross-section and the data sheets are also located in Appendix B as well as the photos of the cross-sections looking upstream and downstream.

4.2 Stream Problem Areas

In general, the problems appeared to be primarily due to a lack of vegetation along the banks, which triggered or accelerated bank erosion especially on the main channel. Some of the eroding banks were in places where there was not a good root mass to hold the soil in place. This was also the case around some structures. Erosion around the structures could have been caused by the lack of vegetation and also due to back eddy flows that occur around such structures. In normal situations, where vegetation has stabilized the banks these eddies would not have created these large areas of erosion. However, with no vegetation to hold the bank together, these banks were scoured away or caved in. The photos below represent a majority of the problems along the main channel. Exhibit Table IX for the main channel and UT below summarize the problem areas recorded during the site visit with the approximate station number and photo number. Figures 3a-e show the location of these problem areas. Appendix A contains photos of all the problem areas discussed within the table.

Lack of vegetation to hold the bank together.

Lack of vegetation, leading to bank erosion also triggered by eddy downstream of structure (bowling effect).

Exhibit Table IXa. Stream Problem Areas Little Bugaboo Creek Project Number and Name: SCO# 00-5327-01A (Little Bugaboo Creek)								
Feature Issue	Station Numbers	Suspected Cause	Photo Number					
Aggradation/Bar Formation								
Bank Scour	11+00	Back eddy in front of rootwads	1					
	12+00	no vegetation	2					
	13+50-14+50	no vegetation	3					
	19+25	back eddy below cross-vane	4					
	20+90-22+00	no vegetation, back eddy behind rootwads, and incoming flow from tributary	5					
	24+50	no vegetation	6					
	25+00	overland flow/small drainageway	7					
	25+50	cross-vane, no vegetation	8					
	29+00	no vegetation, overland flow	9					
	33+30	eroding drainagway, overland flow	10					
	36+00	no vegetation	11					
	36+50	cross vane, no vegetation	12					
	46+25	back eddy from cross-vane	13					
	51+00	overland flow/cross vane	14					
Engineered structures		see also bank scour at rock structures						

	Problem Areas UT Little Bugaboo Cro SCO# 00-5327-01A (Little Bugaboo Creek)	еек
Station Numbers	Suspected Cause	Photo Number
14+00	Transverse Bar, narrowing channel	1
15+25	Overland flow and eddies around rootwads	2
17+80	Erosion below cross-vane, angle of vane	3
23+80	Erosion upstream of vane, tight bend	4
	Station Numbers 14+00 15+25	Station Suspected Cause Station Numbers Suspected Cause

4.3 Quantitative Morphology, Results and Discussion

Pebble counts were performed at each of the twelve cross-sections. Two longitudinal profiles were surveyed along LBC and one along the UT. Exhibit Table XI and XII summarize the morphology of Little Bugaboo Creek and the UT to Little Bugaboo Creek. Additional survey data is located in Appendix B.

The stream channel has significant areas of bank erosion as noted in Section 4.2. These areas of erosion may be due to one of the following: lack of vegetation, improper installation and/or design of structures, stream design dimensionless ratios, the inner berm was not constructed as according to the plans for typical cross-sections, and overland flow/drainageways entering the stream channel. The vegetation as discussed in Section 3.0 does not meet mitigation requirements and could be triggering or accelerating the bank erosion observed along LBC.

It was also noted that the design parameters were perhaps too large and the channel was built larger than it should have been and without inner berms. The cross-sectional area for LBC design channel was constructed slightly larger (median 61.1 square feet) than specified in the restoration plan (55.7 square feet). However, after examining the Piedmont regional curves for the LBC watershed area it is believed that the channel should have been designed with a cross-sectional area of 50 square feet. Also, the bankfull width was designed at 25.8 and constructed the median bankfull width is 28.8. From the Piedmont Regional Curve, the bankfull width should be around 21.90 with a mean depth of 2.28, which for LBC the data indicates that the mean depth is appropriate and bankfull width should be smaller. The UT's dimensions match the Piedmont regional curve recommendations.

There are several areas where overland flow is causing bank instability. These include drainageways that were present prior to construction and a few new ones since construction. The overland flow in some locations is causing major erosion as shown in Appendix A. A lack of vegetation could also contribute to this problem, which needs to be addressed throughout the entire project.

Exhibit Table XIa. Baseline Morphology and Hydraulic Summary

Project Number and Name: SCO# 00-5327-01A (Little Bugaboo Creek)

Segment/Reach: Main (1,180 feet)

				r			P	1: Main (1,180		1			T			T		
Parameter	US	GS GAGE D	ATA	Regi	onal Curve Ir	nterval	Pre-	Existing Cond	ition	Proje	ct Reference	Stream		Design-LB0	<u> </u>		As-Built- L	BC
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med *	Min	Max	Med *	Min	Max	Avg ^	Min	Max	Med
	IVIIII	IVIAX	Meu	IVIII	IVIAX	 	 			 	 	 	171111	Max	25.8	20.3		28.8
BKF Width (ft)						21.9	26	35.5	30.75 90	20	21.5	20.75	 	 	25.8	87.5	100	100
Floodprone Width (ft)						NA 50.42				40.0	42.0		<u> </u>			1		
BKF Cross-Sectional Area (ft²)				***************************************		50.42	54	87.7	70.85	40.9	42.8	41.85	1		55.7	53.9	67.5	60.1
BKF Mean Depth (ft)						2.28	2.7	2.9	2.4 3.4	2	2.7	2.6			2.15 3.5	3.6	4.6	2.2 4.1
BKF Max Depth (ft)						NA NA	8.8	17.4	13.1	2.5 9.8	10.8	10.3		 	12	12	32.6	12.6
Width/Depth Ratio Entrenchment Ratio						NA NA	0.0	17.4	2.7	9.8	10.8	65	<u> </u>	-	9.9	3.1	3.5	3.3
Wetted Perimeter (ft)						26.46	29.8	41.3	35.55	24	25.5	24.75			30.1	32.7	46.8	33.3
Hydraulic radius (ft)		NA				1.906	1.812	2.123	1.993	1.704	1.678	1.691		:	1.850	1.3	2.0	1.9
Pattern						1.500	1.012	2,123	1.773	1,704	1.070	1.071	1		1.050	1,3	2.0	1
Channel Beltwidth (ft)							36	140	88	31	44	37.5	NA	NA	NA	63	122	92.5
Radius of Curvature (ft)							62	234	148	42	63	52.5	72.9	102.9	87.9	60	110	85
Meander Wavelength (ft)							133	590	361.5	185	260	222.5	196	366	281	206	366	286
Meander Width Ratio		NA			NA		4.4	19.3	11.85	8.9	12.6	10.75	6.5	12.2	9.35	7.2	12.7	9.9
Profile													14-1					
Riffle length (ft)					2000					23	78	50.5	47.1	3,8		12 3	3/791	47
Riffle slope (ft/ft)										0.02	0.02	0.02			0.01	0.00	0.20	0.10
Pool length (ft)										8	32	20				47	94	70.5
Pool spacing (ft)		NA			NA		57	287	172	98	180	139	106	217	161.5	121	127	124
Substrate													_				· · · · · · · · · · · · · · · · · · ·	
d50 (mm)									0.25			3				0.25	11.3	5.8
d84 (mm)		NA			NA				23			50				1	64	32.5
							•	r		r			1	T	T	T		T
Additional Reach Parameters														ļ				
Valley Length (ft)																		3,420
Channel Length (ft)													<u></u>					4,276
Sinuosity									1.3			1.1			1.2			1.3
Water Surface Slope (ft/ft)									0.00			0.01			0.01	0.00	0.01	0.01
BKFslope (ft/ft)																0.00	0.01	0.00
Rosgen Classification								Bc, C, E, & F			E4			C			C	
Number of Bankfull Events															100			
Extent of BKF floodplain (acres)																		
ВЕНІ							20.3	47.9	34.1									
Habitat Index									- //2									
Macrobenthos		NA			NA						NA			NA			NA	
iviacrobentnos							L	L	L	I			1			1	****	

^{*} Median is median of min and max for this table

[^] Average is used in design parameters (morphology table, not median)

Exhibit Table XIb. Baseline Morphology and Hydraulic Summary

Project Number and Name: SCO# 00-5327-01A (for UT Little Bugaboo Creek)

Segment/Reach:UT (383 feet)

Problems With full				••••	т			T	ich:UT (383		·			- 			T		
BMF Walth (P)	Parameter	US	SGS GAGE DA	ATA	Regi	onal Curve I	nterval	Pre	-Existing Cor	ndition	Proj	ect Reference	Stream		Design-UT L	LBC		As-Built- UT	LBC
BMF Walth (P)			т т		T	Γ	T	т	Т	T	1	T	T	T	T	Т	Τ	T	T
Problems With full		Min	Max	Med	Min	Max	 	 	 	 	 	 		Min	Max		 	 	
	BKF Width (ft)						15.55	17.5	18	·	29.5	36.9					+	<u> </u>	18.6
BRFM Mem Deph (P)	Floodprone Width (ft)									38	_		329	ļ					68.0
Microst Depart Rate 2 2 3 2 5 3 3 3 3 1 0 2 2 4 3 8 8 1 4 1 4 1 4 1 4 4 1 4 4	BKF Cross-Sectional Area (ft ²)						27.55	21.2	21.9	21.55	64.9	71.9	68.4			27	22.1	34.4	30.9
Midel Depth Ratio	BKF Mean Depth (ft)						1.74	1.2	1.2	1.2	1.9	2.2	2.05			1.5	1.1	 	1.4
Filter-chines Refine Personance (1)	BKF Max Depth (ft)							2.2	-	2.25	3	-		ļ	<u> </u>		 		3.1
199 194 195	Width/Depth Ratio							14.4	14.8	14.6	13.4	19.4		ļ			T		14.2
Pattern								<u> </u>			<u> </u>								3.6
Petter P	Wetted Perimeter (ft)								 	 	<u> </u>			ļ			1	 	21.3
Channel Belrovidit (1)	Hydraulic radius (ft)		NA					1.07	1.07	1.07	1.95	1.74	1.84			1.29	1.0	1.8	1.2
Radius of Curconne (1)	Pattern							Т	T	T	T	T	Т	T	T		T	Т	
Meander Warelength (f) NA	Channel Beltwidth (ft)							26	-	1	59				ļ		40	131	59.5
Meander Width Ratio NA NA 49 199 124 105 9 12 10.5 7.0 11.00 9.4								27		 	40.1	69.3		 					
Profile Prof													-	129					175
Riffle length (f) Riffle stope (tift)	Meander Width Ratio		NA			NA		4.9	19.9	12.4			10.5	9	12	10.5	7.01	11.00	9.43
Riffle slope (II/In Pool length (I) Pool length (I) NA NA NA NA NA NA NA N	Profile										T	T	T	T	T	T	Т	T	T
Pool length (fi)	Riffle length (ft)										10	245	127.5				_		25
NA	Riffle slope (ft/ft)												0.02	<u> </u>		0.02	0.00		0.10
Substrate	Pool length (ft)											-		ļ				·	70.5
Main	Pool spacing (ft)		. NA		<u> </u>	NA		33	176	104.5	271	334	302.5	64	166	115.0	121	127	124
Mail	Substrate				1			r			Τ	T	T	1	T	T	Т	Т	
Additional Reach Parameters Substituting Subst	d50 (mm)										ļ						0.5		3.1
Valley Length (ft) Channel Length (ft)	d84 (mm)		NA			NA				23			180				8	32	20
Valley Length (ft) Channel Length (ft)								,	T				1	T	T	T	T	T	
Channel Length (ft) Sinuosity	Additional Reach Parameters														, , , , , , , , , , , , , , , , , , , ,				
Sinusity Water Surface Slope (ft/ft) Surface Slo	Valley Length (ft)												ļ						1,603
Water Surface Slope (ft/ft) BKFslope (ft/ft)	Channel Length (ft)														<u> </u>				1,954
BKFslope (ft/ft) Rosgen Classification	Sinuosity									1.2							 		1.2
Rosgen Classification Number of Bankfull Events Extent of BKF floodplain (acres) BEHI Habitat Index	Water Surface Slope (ft/ft)									0.01	<u> </u>		0.014			0.01	<u> </u>		0.01
Number of Bankfull Events Extent of BKF floodplain (acres) BEHI Habitat Index	BKFslope (ft/ft)								L		<u> </u>						_		0.01
Extent of BKF floodplain (acres) 21.5 45.5 33.5 Habitat Index 1	Rosgen Classification								C and F			C4			C and F			C	
21.5 45.5 33.5	Number of Bankfull Events																		
21.5 45.5 33.5	Extent of BKF floodplain (acres)																		
Habitat Index								21.5	45.5	33.5				100					
																	100		
Macrobenthos NA			NA			NA						NA			NA			NA	

^{*} Median is median of min and max for this table

[^] Average is used in design parameters (morphology table, not median)

Exhibit Table XIIa. Baseline Morphology and Hydraulic Summary Project Number and Name: SCO# 00-5327-01A (Little Bugaboo Creek) Segment/Reach: Main (Cross-Sections 1-4 upper reach and 5-8 lower reach) Cross-Section 1 Riffle Cross-Section 2 Pool Cross-Section 3 Riffle Cross-Section 4 Pool Cross-Section 5 Riffle Cross-Section 6 Pool Cross-Section 7 Pool Cross-Section 8 Riffle Parameter BKF Width (ft 28.5 87.5 29 28.5 44 30.2 20.3 20.7 Floodprone Width (ft) 001 100 100 BKF Cross-Sectional Area (ft²) 66.8 60,5 59.5 53.9 59.6 55.2 65.8 67.5 2,3 BKI Mean Depth (ft) 1.4 1.8 2.1 2.7 3.2 2.4 3.6 4.6 BKI Max Depth (ft) 3.7 4.6 3.9 3.8 4.2 4.2 Width/Depth Ratio 12.6 32.6 14..1 Entrenchment Ratio >3.5 >2.3 >3.4 3.1 27.1 2.42804 33.8 33.6 Wetted Perimeter (ft) 46.8 1.59467 1.7952 2.14786 Hydraulic radius (ft) 1,988095 1.85015 1.27137 Substrate d50 (mm) 0.25 0.5 5.7 11,3 0.25 8

GO4 (HHII)			<u></u> _			· •					4.)	L				4		
* Pool data does not include these measurements																		-
			I				seline Mor											
				Project N	lumber ar	ıd Name:	SCO# 00-5	5327-01A (Little Bug	aboo Cree	k)							
						Segi	ment/Reac	h: Main										
Parameter	1	MY-01 (202	XX)		Y-02 (20X	(X)	M	IY-03 (20X	(X)	M	Y-04 (20)	(X)	M	Y-05 (20X	X)	M	1Y-06 (20X	(X)
Dimension	Min	Max	Med \$	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKI: Width (ft)	20.3	44	28.8			1	<u> </u>	1										
Floodprone Width (ft)	87.5	100	100.0	l			· · · · · ·			l								
BKF Cross-Sectional Area (ft ²)	53.9	67.5	60,1			T	T	†		†								
BKF Mean Depth (ft)	1.4	3.2	2.2	l	<u> </u>	 	t	 		!						—		
BKF Max Depth (ft)	3.6	4.6	4.1				 	†	1	l	 							
Width/Depth Ratio	12	32.6	12.6															
Entrenchment Ratio	3.1	3.5	3.3						 		 							
Wetted Perimeter (ft)	32.7	46.8	33.3		1		i –											
Hydraulic radius (ft)	1.3	2.0	1.9						1									
Profile																		
Riffle length (ft)	3	91	47						Ī									
Riffle slope (fi/ft)	0.0036	0.1967	0.1002															
Pool length (ft)	47	94	70.5															
Pool spacing (ft)	121	127	124															
Additional Reach Parameters						T		T	l e	ľ								100000000000000000000000000000000000000
Valley Length (ft)	3,420					 		 	 	 							-	·
Channel Length (ft)	4,276						 	 	 	 							·	
Sinuosity	1.3				 	 		 	 	l								
Water Surface Slope (ft/ft)	0.0041	0.0066	0.0054				 	 					 					
	BKI slope (ft/ft) 0.0002 0.0061 0.0032																	
Rosgen Classification		 																
Number of Bankfull Events								T										
Extent of BKF floodplain (acres)																		
BEHI		NΛ																-
Habitat Index						I	I		l .	l								
Macrobenthos																		

^{*} Median taken from riffle and pool cross-sections

								Exhibit Ts	the XIIb. B.	seline Mornh	Exhibit Table XIIb. Baseline Marnhology and Hydranlic Summary	ranlic Summ	arv.							
							ũ	roject Numb	er and Name	Segment/Reach: UT	Project Number and Name: SCO# 00-5327-01A (UT Little Bugaboo Creek) Segment/Reach: UT	ittle Bugaboo	Creek)							
Parameter		ű	Cross-Section 1 Riffle	Riffic)	Cross-Section 2 Riffle	12 Riffle				Cross-Section 3 Pool	Pool			1	Ü	Cross-Section 4	Cross-Section 4 Pool
Dimension	MY1	MY2	MY3	MY4	MYS	MY1	MY2	MY3	i MY4	4 MYS	MYI	MY2	MY3	MY4	MYS	MYI	-	MY2	MY2 MY3	L
CF Width (ft)	1) 19.5					17.6					14.8					- %	1_		╀	
me Width (ft	75					19				-	*					*	L			
nal Arca (ft²)	22.1					27.6					34.4					34.2	1			
an Depth (ft)	1.13					1.57			_		2.3					-	L			
ax Depth (ft)	0 2.9					2.64					3.8					3.3	L			
/Depth Ratio	io 17.2					11.2					*					*	\perp			
chment Ratio	3.8					3.47					*					*				
Perimeter (ft)	t) 21.76					20.74					19.4					33.2	L			
lic radius (ft)	t) 1.015625					1.3307618	18				1,77319588	90				1.03012048	L			
Substrate																				
d50 (mm)	n 2					∞					_					0.5	o a social de la composition della composition d	CHURCH COLUMN		
d84 (mm)	8 (1					32					5.7					3,00				

Parameter Mile Mi							1-2	The Transfer	. t. (a. 197)										
MIN MIN							Proj.	ect Number a	nd (con t), ba nd Name: SC Seg	Senne Morph 70# 00-5327-4 ment/Reach:	iology and H; OIA (UT Lift -UT	ydraulic Sum He Bugaboo (mary Creek)						
Min Mix Med Min Max Med Min Min Max Med Min	Parameter	V	MY-01 (20XX		N.	IY-02 (20XX	0		MY-03 (20XX	0		MY-04 (20X)	()		4Y-05 (20XX	_		MY-06 (20X	Î.
Min Max Med Min Min Max Med Min Min Max Med Min Min Max Med Min																			
	Dimension	Min	Max	Med*	Min	Max	Med	Min	Max	Med	Min	Max	Med	Nfin	Max	Med	Min	Max	Med
Part 174 221 244 309	KF Width (ft)	14.8	31	18.6															
Marche Holland House, 12 344 389 349	me Width (ft)	(9)	7.5	0.89															
Part	mal Area (ft²)	22.1	34,4	30.9															
Backlet 1.2	san Depth (it)	1.1	2.3	1.4															
Physic Ratio 11.2 12.2 14.2	ax Depth (ft)	2.64	3.8	3.1															
Chinch Rail 347 38 36	ADepth Ratio	11.2	17.2	14.2															
Perimeter (II) 19.4 33.2 21.3	chment Ratio	3.47	3.8	3.6														1	
Fig. Parities (1) 1015625 177319588 1.2	Perimeter (ft)	19.4	33.2	21.3															
Profite 2	lic radius (ft)	1.015625	1.77319588	1.2														+	
Tile (Longh (1f) 22 28 25 25 28 25 25 26 26 25 26 26 25 26 26	Profile																		
Selver (107) 0.0036 0.1967 0.1002 0.10	Te length (ft)	22	28	25															
Spacing (1) 70 104 87 87 80.5 87 87 87 87 87 87 87 8	le skipe (fl/ft)	0.0036	0.1967	0.1002															
Additional Reacts 70 104 87	ool length (ft)	46	75	5.09															<u> </u>
Additional Reach Parameters	ol spacing (ft)	70	104	87															
Additional Reach Parameters Additional Reach Parameters Additional Reach Parameters Additional Reach Parameters 25 Long in (i) 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,																			
Strongh (t) 1603 Strongh (t) 1504 Strongh (t) 1.954 Strongh (t)	Additional Re	sach Parame	ters																
Sinusity 1.2 Sinusity Sinusity	cy Length (ft)	1.603																	
Situacity 1.2	el Length (ft)	1.954																	
EStope (t/th, 0.0101 0.0101 0.0101 0.0101 0.009 0.	Sinuosity	1.2																	
Taktop (th/t) 0,009 Classification C C C C C C C C C	e Slope (ft/ft)	0.0101																	
Classification C inkfull ivenis Inkfull ivenis tiplat (aces) NA Habitat Index Identified (aces) flactorbethlos Identified (aces)	(Pslope (fl/ft)	0.009																	
Inkituil lavents	Classification	Э																	
Updain (aces) NA Page 1 Page 2 Page 3 Page	nkfull Events																		
BEHI	Uplain (acres)																		
Habitat Index Agenvernitos	ВЕНІ		ΚX																
Jacubenhos	Habitat Index																		
	Macrobenthos																		

APPENDIX A

RAW VEGETATION DATA, VEGETATION PLOT PHOTO LOG, AND PROBLEM AREA PHOTO LOG

See Figures 2a-2e for location of vegetation plots and identifying plot number. Photos representing the plots follow with the raw data for each plot.

LITTLE BUGABOO CREEK -2005

PHOTO LOG VEGETATION PLOTS – AS-BUILT

Vegetation Plot 101

Vegetation Plot 102

Vegetation Plot 103

Vegetation Plot 104

Vegetation Plot 105

Vegetation Plot 106

LITTLE BUGABOO CREEK -2005

PHOTO LOG VEGETATION PLOTS – AS-BUILT

Vegetation Plot 107

Vegetation Plot 108

Vegetation Plot 109

Vegetation Plot 110

Vegetation Plot 111

Vegetation Plot 112

LITTLE BUGABOO CREEK -2005

PHOTO LOG VEGETATION PLOTS – AS-BUILT

Vegetation Plot 113

Vegetation Plot 114

Vegetation Plot 115

Vegetation Plot 116

LITTLE BUGABOO AS-BUILT VEGETATIO	N MONITORING	Date Investigator	4/4,	Lank Ford		
Spec		yestiyatol	(2	Plots	· · · · · · · · · · · · · · · · · · ·	
Live S		101	108	1,010		T
Salix sericea	Silky Willow					
Cornus amomum	Silky Dogwood					
<u>Canopy</u>	<u>'Trees</u>	0				
Acer negundo	Box Elder					
Amelanchier arborea	Serviceberry		(<i>o</i>			
Carpinus caroliniana	Iron Wood	•				
Diospyros virginiana	Persimion					
llex opaca	American Holly					
Quercus alba	White Oak		0			
Betula nigra	River Birch					
Fraxinus pennsylvanica	Green Ash					
Juglans nigra	Black Walnut	0				
Plantanus occidentalis Shr i	Sycamore	1;	6			
<u>51110</u>	lbs					
Alnus serrulata	Tag Alder		, , , , , , , , , , , , , , , , , , ,			
Celtis laevigata	Hackberry					
Corylus americana	Hazelnut					
llex verticillata	Winterberry Holly			W		
Lindera benzoin	Spice Bush					
Viburnum dentatum	Arrowwood	·		·		
Andmul?	Dogwood??					
Viburni nudon			•.			
Elderpend			P			
Aronit am			D &			
Pic #			213			
Proto	# 1 00 m	nl 6/93	1000 A	rces p	lanted	
All w/	a /w 1.10 a	O E			1	

Condida

LITTLE BUGABOO AS-BUILT VEGETATIO	N MONITOPING	Date Investigator		= 4-05 1(FORD) **-	
Spec		jinvestigatoi	GLAN	Plots		
Live S		102			1 1/- /	1100
<u>Elve S</u>	lakes	102	103	105	106	107
Salix sericea	Silky Willow					
Corrus omorrum	Cillar Desires d					
Cornus amomum Canopy	Silky Dogwood **Trees					
A	D E					•
Acer negundo	Box Elder		? 🌶		0	
Amelańchier arborea	Serviceberry		1.0			
Carpinus caroliniana	Iron Wood					
Black Buds		?		• ?		
Diospyros virginiana	Persimion		Do Ax2			
llex opaca	American Holly		•			
Quercus alba	White Oak	0		0	6	•
Betula nigra	River Birch	•		₽	•	P
Fraxinus pennsylvanica	Green Ash	•		•		
Juglans nigra	Black Walnut	•		P		
			•	Ø .	Ø	•
Plantanus occidentalis Shri	Sycamore u bs					
					6	
Alnus serrulata	Tag Alder					
Celtis laevigata	Hackberry					
Corylus americana	Hazelnut					
llex verticillata	Winterberry Holly					
	Winterberry Fronty					
Lindera benzoin	Spice Bush	0		• ?	<u> </u>	
Viburnum dentatum	Arrowwood	•				
Viburam nudom?			FO			
UNKnum weed? opplent. sp.	1 ve 1 ?? leves.	•	,			
elderbe m		0		 		
Anna		ø		0 F ,		
MATTICK						
Photo H		2	3	11	12	
1 to (No () - + .	,)	5/12	D	2/10	0/5	
Italia (No) (with	week 305 /	119	114	710	15	

LITTLE BUGABOO AS-BUILT VEGETATIOI	N MONITORING	Date Investigator	4-5-	OS M((FUR))		
Spec		// /	110	Plots		
Live S		1/2		109	Γ ,	164
Salix sericea	Silky Willøw					
Cornus amomum	Silky Dogwood		į.	•		
<u>Canopy</u>	Trees					
Acer negundo	Box Elder		* *			
Amelanchier arborea	Serviceberry				A control of the cont) b
Carpinus caroliniana	Iron Wood		_			
Diospyros virginiana	Persimion			(D)		
llex opaca	American Holly					
Quercus alba	White Oak					•
Betula nigra	River Birch	•	10			06
Fraxinus pennsylvanica	Green Ash		LI	B		S
Juglans nigra	Black Walnut			9	Appendix a Liverage	P 65
Plantanus occidentalis	Sycamore	o	I:			
Shru						
		§ •		9		ø
Alnus serrulata	Tag Alder	0				
Celtis laevigata	Hackberry ?				BOAT OF THE ACTION	:
Corylus americana	Hazelnut				n.o.C.L.L.Charleson	
llex verticillata	Winterberry Holly	- h			ou-continued (
Lindera benzoin	Spice Bush					
Viburnum dentatum	Arrowwood	<i>.</i> •			NI PARAMETER AND	•
Elderbeing Aroma	·		7 2	<i>.</i>	2027	
		•	0		A Dane de La caración	A
Moiting Kox &		5.		DE DE	Till de demandage les adigs	8
Vibram notin			•		***************************************	•
Multifle a Rosine Vibrian nucle Unknown wadyse Thirtwis one 155 Photo #		12.2				
that t		14	15	16/13		3.7
		1/12	19	1/7		2/1

LITTLE BUGABOO	U MONITORIO	Date	Apris	5 0	5	
AS-BUILT VEGETATION Spec		Investigator	G. L	ANKFURD	-115	8
Live S		112	14	Plots	ON Tris	116
Salix sericea	Silky Willow		113	114		W
Cornus amomum	Silky Dogwood					
Canopy	Trees					
Acer negundo	Box Elder					
Amelanchier arborea	Serviceberry					
Carpinus caroliniana	Iron Wood			7.6		·
Diospyros virginiana	Persimion			7.0		
llex opaca	American Holly					
Quercus alba	White Oak	8		6		8 S 0 0
Betula nigra	River Birch					
Fraxinus pennsylvanica	Green Ash	8			•	6
Juglans nigra	Black Walnut				0 •	9
Plantanus occidentalis	Sycamore	E		•		に
<u>Shru</u>	IDS	6 6				
Alnus serrulata	Tag Alder	6 g	6			9 0
Celtis laevigata	Hackberry					
Corylus americana	Hazelnut					
llex verticillata	Winterberry Holly					
Lindera benzoin	Spice Bush					
Viburnum dentatum	Arrowwood					
Saliy Aigen Res?	BILL WILLIA	L				
Sumbreus can.	Eldibing		6		•	
Aronia aisship				• •		
Viburan Audin					7 7	•
Choto #					•	•
Choto #		24	29	3 0	33	34

autro/DH

%3

% 2/7 0/5 3/11 1 woody veg natemt or

PHOTO LOG PROBLEM AREAS - AS-BUILT

1. Station 11+00

2. Station 12+00

3. Station 13+50-14+50

4. Station 19+25

5. Station 20+90 - 22+00

6. Station 24+50

PHOTO LOG PROBLEM AREAS - AS-BUILT

1. Station 11+00

2. Station 12+00

3. Station 13+50 - 14+50

4. Station 19+25

5. Station 20+90 - 22+00

6. Station 24+50

PHOTO LOG PROBLEM AREAS – AS-BUILT

7. Station 25+00

8. Station 25+50

9. Station 29+00

10. Station 33+30

11. Station 36+00

12. Station 36+50

PHOTO LOG PROBLEM AREAS – AS-BUILT

13. Station 46+25

14. Station 51+00

UT LITTLE BUGABOO CREEK -2005 PHOTO LOG PROBLEM AREAS – AS-BUILT

15. Station 14+00

16. Station 15+25

17. Station 17+80

18. Station 23+80

Appendix A

APPENDIX B

RAW STREAM DATA AND CROSS-SECTION PHOTO LOG

PHOTO LOG CROSS-SECTIONS – AS-BUILT

Cross-Section 1 Upstream

Cross-Section 1 Downstream

Cross-Section 2 Upstream

Cross-Section 2 Downstream

Cross-Section 3 Upstream

Cross-Section 3 Downstream

PHOTO LOG CROSS-SECTIONS - AS-BUILT

Cross-Section 4 Upstream

Cross-Section 4 Downstream

Cross-Section 5 Upstream

Cross-Section 5 Downstream

Cross-Section 6 Upstream

Cross-Section 6 Downstream

PHOTO LOG CROSS-SECTIONS – AS-BUILT

Cross-Section 7 Upstream

Cross-Section 7 Downstream

Cross-Section 8 Upstream

Cross-Section 8 Downstream

PHOTO LOG CROSS-SECTIONS - AS-BUILT

UT Cross-Section 1 Upstream

UT Cross-Section 1 Downstream

UT Cross-Section 2 Upstream

UT Cross-Section 2 Downstream

UT Cross-Section 3 Upstream

UT Cross-Section 3 Downstream

PHOTO LOG CROSS-SECTIONS – AS-BUILT

UT Cross-Section 4 Upstream

UT Cross-Section 4 Downstream

105

Field Crew: River Basin: Watershed: Stream Reach: Drainage Area: Station: Feature:	Amarda Indu and Wade Patton Yankin Pe-Dea Little Bugaboo Reach 1 3.45 4/5/2005 1+67 CS1 RIFFLE	and Wade F	allow			
STATION (FEET)	HI (FEET)	FS (FEET)	ELEVATION (FEET)	NOTES		
0+00:0	101.17	4.94	96.23	REBAR 4.78		
0+07.0	101.17	4.95 00 A	96.22		- Control of the Cont	T HILL CONTROL
0+22.0	101.17	5.32	95,85	TOBlint		Hydraulic Georg
0+29.0	101.17	5.61	95.56		Width	
0+36.0	101.17	6.19	94.98	BKF	(Feet)	
0+37.5	101.17	6.72	94.45	EHOSION	0.0	
0+40.0	101.17	6.30	94.87		1.5	0.5
0+41.5	101.17	7.26	93.91		20.57	0.1
0+42.5	101.17	7.02	94.15		1.5	
0+46.3	101.17	9.28	91.89	LEOW/WS	1.0	0.8
0+47.5	101.17	9.82	91.32		3.8	3.1
0+51.7	101.17	9.92	91.25		5,1	3.7
0+55.0	101.17	9.91	91.26		4.2	3.7
0+29:0	101.17	9.93	91.24	ML	3.3	3.7
0+59.6	101.17	9.25	91.92	REOW/WS	4.0	3.7
0+64.0	101.17	6.48	94.69		0.0	3.1
0+65.0	101.17	6.19	94.98	BKFLINT	4.4	0.3
0+67.9	101.17	5.32	95.85	TOB	0.1	0.0
0+40	101.17	4.90	96.27			
0+95.0	101.17	3.78	97.39		TOTALS 29.0	
1+000	10117	0000	7070	73 0 0000	ĺ	

	BANKFULL			
_	Hydraulic Geometry	etry		
dth	Depth	Area		Width
et)	(Feet)	(Sq. Ft.)		(Feet)
o.	0.0	0.0		0.0
z,	0.5	0.4		7.0
ιū	0.1	0.8		7.0
5	Ξ	6:0		1.5
o.	0.8	1.0		2.5
80	3.1	7.4		1.5
C)	3.7	4.1		1.0
2	3.7	15.5		3.8
6	3.7	12.3		1.2
0	3.7	14.9		4.2
9	3.1	2.0		3.3
4	0.3	7.4		4.0
0.	0.0	0.1		9.0
				4.4
0		66.8		1.0
				2.9
			TOTALS	45.9

1001	(F)	98.4	45.9	4.6	2.1
TA C COLUMN	SUMMARY DALA (LOB)	A(BKF) 98	W(BKF) 45		Mean d 2

>100

A(BKF)	A(BKF)	A(BKF)
A(BKF)	66.8	W(FPA)
W(BKF)	29.0	Slope
Max d	3.7	Sinuosity
Mead	2.3	Area= A
W(D	12.6	Width= W
Enterohment	-3.5	Depth= W
Siream Type	C	Bankfull= BKF
Area from Rural Regional Curve		

				PEBBLE	COUNT	·			***************************************
Site: LBC							4/5/2005		
Party: Ama	nda Todd and W	ade Patton					CS#1		
		·			Particle Cour	nt			
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	4			4	4%	4%
	Very Fine	.062125	S	4			4	4%	8%
	Fine	.12525	Α	2	}		2	2%	10%
	Medium	.2550	N	24			24	24%	34%
	Coarse	.50 - 1.0	D	28			28	28%	62%
.0408	Very Coarse	1.0 - 2.0	S	6			6	6%	68%
.0816	Very Fine	2.0 - 4.0		0			0	0%	68%
.1622	Fine	4.0 - 5.7	G	3			3	3%	71%
.2231	Fine	5.7 - 8.0	R	2			2	2%	73%
.3144	Medium	8.0 - 11.3	Α	9			9	9%	82%
.4463	Medium	11.3 - 16.0	V	2			2	2%	84%
.6389	Coarse	16.0 - 22.6	E	2			2	2%	86%
.89 - 1.26	Coarse	22.6 - 32.0	L	8			8	8%	94%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	3			3	3%	97%
1.77 - 2.5	Very Coarse	45.0 - 64.0		1			1	1%	98%
2.5 - 3.5	Small	64 - 90	C	2			2	2%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	Landing Land	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	100			100	100%	100%

Particle Size Distribution Little Bugaboo Creek

StreamSurveyLBCmain2.xls

Date: Station: Feature:	Heach1 3.45 4/5/2005 3+55 CS 2 POOL								
STATION	Ξ	FS	ELEVATION	NOTES					
(FEET)	(FEET)	(FEET)	(FEET)						
0+00.0 0+11.0	101.17	5.77	95.40 94.97	REBAR 5.65					
0+21.3	101.17	6.19	94.98		L	CHARLES AND ADDRESS OF THE PARTY OF THE PART	BANKFULL	Total Assessment Control of the Cont	
0+23.5	101.17	5.99	95.18			Í	Hydraulic Geometry	etrv	
0+25.0	101.17	6,08	95.09	LTOB		Width	Depth	Area	
0+27.5	101.17	6.45	94.72		<u>L</u>	(Feet)	(Feet)	(Sq. Ft.)	
0+28.4	101.17	7.35	93.82			0.0	0.0	0.0	
0+28.5	101.17	7.85	93.32	LBKFLINT		1.0	0.0	0.0	
0+29.5	101.17	11.92	89.25			2.5	4.1	5.1	
0+35.0	101.17	12.45	88.72	ML ML		5.	4.6	6,5	
0+33.5	101.17	11.90	89.27			2.0	4.1	8.7	
0+35.5	101.17	11.05	90.12			2.0	3.2	7.3	
0+37.5	101.17	10.52		REOW		2.5	2.7	7.3	
0+40.0	101.17	9.67	91.50			4.0	1.8	9.0	
0+44.0	101.17	9.46	91.71			8.0	1.6	13,7	
0+52.0	101.17	8.38	92.79			2.0	0.5	5,	
0+54.0	101.17	7.85		RBKF		3.0	0.0	0.8	
0+57.0	101.17	7.90	93.27		TOTALS	28.5		60.5	
0+62.0	101.17	6.08	95.09		j		The state of the s	- Control of the Cont	
0+18.0	101.17	4.95	96.22	RTOB					
1+00.0	101.17	5.80	95.37	REBAR 5.47		SUMMARY DATA (TOB	ATA (TOB)		
						W(RKF)	90.0 28.5		_
						Maxd			
						Meand	5,1	•	

		Area	(Sa. Ft.)	0.0	0.5	2:0		3.7	15.3	1.6	10.8	40	10.0	13.9	25.7	4.1	5.4	4.6	110.4	-						
TOB	Hydraulic Geometry	Depth	(Feet)	0.0	0.4	· ·	, c	, ru	6.4	8,73	5.0	4.4	9	3.4	. 6	8.7	. 8	0.0		e de la companya del companya de la companya del companya de la co		DATA (TOB)	110.4	37.0	6.4	3.0
	Í	Width	(Feet)	0.0	2.5	60	0.0	1.0	2.5	r.	5.0	2.0	2.5	4.0	0.8	5.0	3.0	5.0				SUMMARY DATA (TOB)	A(BKF)	W(BKF)	Max d	Meand
																			TOTALS							
		Area	(Sq. Ft.)	0.0	0.0	5.7	6.5	8.7	7.3	7.3	9.0	13.7	5	0.8	60.5	-										
BANKFULL	Hydraulic Geometry	Depth	(Feet)	0.0	0.0	4.1	4.6	4.1	3.2	2.7	1.8	1.6	0.5	0.0		No. of Contraction		ATA (TOB)	60.5	28.5	4.6	2.1				
	Ť	_	(Feet)	0.0	1,0	2.5	1.5	2.0	2.0	2.5	4.0	8.0	2.0	3.0	28.5			SUMMARY DATA (TOB	A(BKF)	W(BKF)	Maxd	Mean d				
															TOTALS											
		LTOB			LBKFLINT		M.L			REOW				RBKF			RTOB	REBAR 5.47								
94.98	95.18	95.09	94.72	93.82	93.32	89.25	88.72	89.27	90.12	90.65	91.50	91.71	92.79	93.32	93.27	95.09	96.22	95.37								
6.19	5.99	6.08	6.45	7.35	7.85	11.92	12.45	11.90	11.05	10.52	9.67	9.46	8.38	7.85	7.90	6.08	4.95	5.80								
101.17	101.17	101,17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17	101.17								

				PEBBLE	COUNT				
Site: LBC							4/5/2005		
Party: Amai	nda Todd and W	ade Patton					CS#2		
					Particle Cour	nt	.	·	
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	11			1 1	1%	1%
	Very Fine	.062125	S	0			0	0%	1%
	Fine	.12525	Α	0			0	0%	1%
	Medium	.2550	N	21			21	21%	22%
	Coarse	.50 - 1.0	D	16			16	16%	37%
.0408	Very Coarse	1.0 - 2.0	S	10			10	10%	47%
.0816	Very Fine	2.0 - 4.0		2			2	2%	49%
.1622	Fine	4.0 - 5.7	G	18			18	18%	67%
.2231	Fine	5.7 - 8.0	R	5			5	5%	72%
.3144	Medium	8.0 - 11.3	Α	14			14	14%	85%
.4463	Medium	11.3 - 16.0	γ	3			3	3%	88%
.6389	Coarse	16.0 - 22.6	E	6			6	6%	94%
.89 - 1.26	Coarse	22.6 - 32.0	L	2			2	2%	96%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	4			4	4%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0			0	0%	100%
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	102			102	100%	100%

				PEBBLE	COUNT				
Site: LBC							4/5/2005		
Party: Ama	nda Todd and W	ade Patton					CS#3		
	,				Particle Cou	nt			
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	4			4	3%	3%
	Very Fine	.062125	S	5			5	4%	7%
	Fine	.12525	Α	10			10	8%	16%
	Medium	.2550	N	20			20	16%	32%
	Coarse	.50 - 1.0	D	4			4	3%	35%
.0408	Very Coarse	1.0 - 2.0	S	2			2	2%	37%
.0816	Very Fine	2.0 - 4.0		0			0	0%	37%
.1622	Fine	4.0 - 5.7	G	1	Į.		1	1%	38%
.2231	Fine	5.7 - 8.0	R	0			0	0%	38%
.3144	Medium	8.0 - 11.3	Α	6			6	5%	43%
.4463	Medium	11.3 - 16.0	V	12			12	10%	52%
.6389	Coarse	16.0 - 22.6	E	15			15	12%	65%
.89 - 1.26	Coarse	22.6 - 32.0	L	18			18	15%	80%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	14			14	11%	91%
1.77 - 2.5	Very Coarse	45.0 - 64.0		6			6	5%	96%
2.5 - 3.5	Small	64 - 90	С	4			4	3%	99%
3.5 - 5.0	Small	90 - 128	0	1			1	1%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	122			122	100%	100%

Field Crew: River Basin: Watershed: Stream Reach: Drainage Area: Date: Station:	Amanta Tool and Wade Patton Yadkin Pee-Dee Little Bugaboo Reach 7 3.45 4.52005 4.61 CS 3 RIFFLE	d Wade Patton		
STATION	Ŧ	FS	ELEVATION	NOTES
(reel)	(FEE1)	(FEET)	(FEET)	
0+00.0	99.03	6.52	92.51	REBAR 6.42
0+25.0	99.03	6.40	92.63	BKF
0+41.0	99.03	6.58	92.45	
0+47.0	99.03	6.79	92.24	
0+48.5	99.03	7.17	91.86	
0+20.0	99 03	7.74	97.29	

>100

SUMMARY DATA (BANKFULL/TOB)	r) 59.5 W(FPA)	44.0	d 3.9 Sinuosity	d 1.4 Area= A	32.6 V	>2.3	- C	Area from Rural Regional Curve	,	The state of the s								
	A(BKF)	W(BKF	Max d	Meand	Q/M	Entrenchment	Stream Type	Area		CONTRACTOR OF THE PARTY OF THE								
		Area	(Sq. Ft.)	0.0	1.4	1.7	6:0	1.6	6.4	1.6	4.3	7.3	11.3	8.6	4.9	6.9	2.9	40.5
BANKFULL/TOB	Hydraulic Geometry	Depth	(Feet)	0.0	0.2	0.4	0.8	6.7	5.9	3.5	3.7	3.6	3.9	3.7	3.3	1.7	0.0	
		Width	(Feet)	0.0	16.0	6.0	1.5	1.5	2.3	0.5	1,2	2.0	3.0	2.6	1.4	2.7	3.3	440
ı																		LOTAL ST

StreamSurveyLBCmain2.xls

				108	Hydrau	ndag linua	0.0		3.4			4.5								0.7 0.3			101ALS 40.4		DATA	A(BK+) 100.3 W(BK+) 40.4
						(So Et)	0.0	4.6	3.4	7.2	2.9	1.3	7.0	0.0	8:2	6.6	2.8		53.9						-	
				BANKFULL	Hydraulic Geometry	(Feat)	0.0	1	1.4	1.8	1.9	2.3	2.7	3.0	3.6	3.1	0.0					ATA /TOB)	0 63	500	30.2	0 60
					H)	(Fpot)	0.0	8.2	2.7	4.5	1.6	9.0	2.8	3.5	2.5	2.0	1.8		30.2			CHBAMADY DATA	A/BKE	(LNG)V	W(BKF)	Meand
																			TOTALS							
	NOTES	REBAR 6.29		C C	200	LBKF				LEOW/WS				TW		RBKFLINT		RTOBLINT				REBAR 5 72	1			
	ELEVATION	92.74	92.45			91.10	89.99	89.67			88.76	88.43	88.12	87.55			92.19		93.16	93.51	93.58	90.05				
Vaddin Pee-Dee Little Bugaboo Reach 1 3.45 3.45 5.43 CS 4 POOL	FS (EFET)	6.29	6.58	6.67	8.03	7.93	9.04	9:36	9.71	9.81	10.27	10.60	10.91	11.48	11.00	7.93	6.84	6.67	5.87	5.52	υ. π υ. Α. Δ	80.8				
Yadkin Pee-Dee Little Bugaboo Reach 1 3.45 4/5/2005 5+31 CS 4 POOL	HI (1599)	99.03	99.03	99.03	99.03	99.03	99.03	89.03	99.03	99,03	99.03	99.03	99.03	99.03	99.03	99.03	69.03	99.03	99.03	88.03	99.03	99.03				
River Basin: Watershed: Stream Reach: Drainage Area: Date: Station: Feature:	STATION (FEET)	0+00	0+16.0	0+37.0	0+50.2	0+53.6	0+61.8	0+64.5	0.469.0	0+20.6	0+71.2	0+74.0	0+77.5	0.08+0	0+82.0	0+83.8	0+84.5	0+84.8	0.98+0	0.66.0	0+90.0	1+00.0				

				PEBBLE	COUNT			
Site: LBC						4/5/2005		
Party: Ama	nda Todd and W	ade Patton				CS#4		
					Particle Count		·	~ ,
Inches	Particle	Millimeter		Riffle		Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	3		3	3%	3%
	Very Fine	.062125	S	1		1	1%	4%
	Fine	.12525	Α	12		12	11%	15%
	Medium	.2550	N	45		45	42%	57%
	Coarse	.50 - 1.0	D	11		11	10%	67%
.0408	Very Coarse	1.0 - 2.0	S	14		14	13%	80%
.0816	Very Fine	2.0 - 4.0		4		4	4%	84%
.1622	Fine	4.0 - 5.7	G	7		7	7%	91%
.2231	Fine	5.7 - 8.0	R	5		5	5%	95%
.3144	Medium	8.0 - 11.3	Α	2		2	2%	97%
.4463	Medium	11.3 - 16.0	٧	1		1	1%	98%
.6389	Coarse	16.0 - 22.6	E	1		1	1%	99%
.89 - 1.26	Coarse	22.6 - 32.0	L	1		1	1%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0		0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0		0	0%	100%
2.5 - 3.5	Small	64 - 90	С	0		0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0		0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0		0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0		0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0		0	0%	100%
14.3 - 20	Small	362 - 512	L	0		0	0%	100%
20 - 40	Medium	512 - 1024	D	0		0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0		0	0%	100%
	Bedrock		BDRK	0		0	0%	100%
			Totals	107		107	100%	100%

StreamSurveyLBCmain2.xls

8

				BANK	Hydrau	Width	(Feet)	0.0	2.2	8.0	10	6	2.7	13	2.	53	52	2.0	80	2.7	10	1.7	4	6.0	29.0			SUMMARY DATA (BA
																			-	••••	-				TOTALS			NOS
	NOTES	3.26 on rebar					LBKF						LEOW	WL			REOW/WS						RBKF				rebar flush with ground	
	ELEVATION (FEET)	102.86	101.00	100.27	99.47	99.15	99.05	98.92	98.57	97.91	97.17	97.03	95.54	95.29	95.38	95,49	95.85	96.92	97.22	97.78	98.13	98.66	99.05	99.27	99.85	101.36	102.29	
Wade Patton	FS (FEET)	3.59	5.45	6.18	6.98	7.30	7.40	7.53	7.88	8.54	9.28	9.42	10.91	11.16	11.07	10.96	10.60	9.53	9.23	8.67	8.32	7.79	7.40	7.18	6.60	5,09	4,16	
Amanda Todd and Wade Patton Yazkin Pee-Dee Heach 2 8 4-5 0-41 CS 5 RIFFLE	H (FEET)	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	
Field Crew: Hiver Basin: Watershed: Stream Reach; Drainage Area: Date: Station:	STATION (FEET)	0+00:0	0+12.0	0+25.0	0+28.5	0+36.5	0+40.4	0+42.6	0+43.4	0+45.3	0+46.6	0+49.3	0+20.6	0+52.7	0+55.0	0+57.5	0+59.5	0+61.3	0+64.0	0+65.0	0+66.7	0+68.5	0+69.4	0+73.4	0+83.0	0+91.0	1+00.0	

				PEBBLE	COUNT				
Site: LBC							4/5/2005		
Party: Ama	nda Todd and W	ade Patton					CS#5		
	·			,,	Particle Cou	nt			
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0			0	0%	0%
	Very Fine	.062125	S	0			0	0%	0%
	Fine	.12525	Α	5			5	5%	5%
	Medium	.2550	N	36			36	36%	41%
	Coarse	.50 - 1.0	D	0			0	0%	41%
.0408	Very Coarse	1.0 - 2.0	S	3			3	3%	44%
.0816	Very Fine	2.0 - 4.0		2			2	2%	46%
.1622	Fine	4.0 - 5.7	G	1			1	1%	47%
.2231	Fine	5.7 - 8.0	R	3			3	3%	50%
.3144	Medium	8.0 - 11.3	Α	2			2	2%	52%
.4463	Medium	11.3 - 16.0	V	4			4	4%	56%
.6389	Coarse	16.0 - 22.6	E	5			5	5%	61%
.89 - 1.26	Coarse	22.6 - 32.0	L	8			8	8%	69%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	6			6	6%	75%
1.77 - 2.5	Very Coarse	45.0 - 64.0		8			8	8%	83%
2.5 - 3.5	Small	64 - 90	С	14			14	14%	97%
3.5 - 5.0	Small	90 - 128	0	2			2	2%	99%
5.0 - 7.1	Large	128 - 180	В	1			1	1%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0	}		0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	100			100	100%	100%

StreamSurveyLBCmain2.xls

			TOB	Hydraulic Geo			_	0.0 4.5								1.0							SUMMABY DATA (TOB)	A(BKF) 54.6	W(BKF) 21.4		Mean d 2.6
			BANKFULL	Hydraulic Geometry			(34. Ft.)	2.4		6.8			3.1		2.0				55.2			08)	2	33	4.6	7.	
			BANK	Hydraulic		Width De	_			5.4						1.0		0.4	LS 20.3			SUMMARY DATA (TOB	A(BKF) 55	W(BKF) 20		Mean d 2	
	NOTES	rebar 4.48		dot	bkflint	PF.	Ę					eow/ws			bkf				TOTALS		toblint	Commence Assessed Address Assessed Asse		rebar 3.75			
	ELEVATION (FEFT)	101.72	98.05	96.96	96.95	93,52 90,35	92.45	92.36	93.11	93.82	94.56	94.96	95.73	96.50	96.95	96.93	96.87	97.15	97.66	98.57	98.86	100.16	101.80	102.64			
Wade Patton	FS	4.73	8.40	7.49	9.50	14.10	14.00	14.09	13.34	12.63	11.89	11.49	10.72	9.95	9.50	9.52	9.58	9.30	8.79	7.88	7.49	6.29	4.65	3.81			
Amanda Todd and Wade Patton Yadkin Pee-Dee Little Bugaboo Reach 2 3.45 2.457 CS 6 POOL	HI (FEET)	106.45	106.45	106.45	106.45	106.45	106,45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45	106.45			
Field Crew: River Basin: Watershed: Stream Reach: Drainage Area: Date: Station:	STATION (FEET)	0+00.0	0+13.0	0+19.2	0+20.7	0+24.0	0+25.5	0+27.5	0+29.5	0+32.0	0+34.7	0+35.7	0+36.7	0+40.6	0+41.0	0+42.8	0+45.0	0+45.7	0+51.0	0+57.0	0+59.5	0+67.0	0+79.0	0+82.0			

Area (Sq. Ft.)
0.0
2.5
10.1
3.6
6.8
8.4
7.0
6.9
6.9
1.6
0.9
5.46

				PEBBLE	COUNT		V	
Site: LBC						4/5/2005		
Party: Ama	nda Todd and W	ade Patton				Pool CS#2		
					Particle Count		·	Ţ
Inches	Particle	Millimeter		Riffle		Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	3		3	3%	3%
	Very Fine	.062125	S	1		11	1%	4%
	Fine	.12525	Α	10		10	10%	14%
	Medium	.2550	N	39		39	39%	53%
	Coarse	.50 - 1.0	D	11		11	11%	64%
.0408	Very Coarse	1.0 - 2.0	S	14		14	14%	78%
.0816	Very Fine	2.0 - 4.0		4		4	4%	82%
.1622	Fine	4.0 - 5.7	G	7		7	7%	89%
.2231	Fine	5.7 - 8.0	R	5		5	5%	94%
.3144	Medium	8.0 - 11.3	Α	2		2	2%	96%
.4463	Medium	11.3 - 16.0	V	1		1	1%	97%
.6389	Coarse	16.0 - 22.6	E	1		1	1%	98%
.89 - 1.26	Coarse	22.6 - 32.0	L	1		1	1%	99%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0		0	0%	99%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0		0	0%	99%
2.5 - 3.5	Small	64 - 90	С	0		0	0%	99%
3.5 - 5.0	Small	90 - 128	0	1		1	1%	100%
5.0 - 7.1	Large	128 - 180	В	0		0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0		0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0		0	0%	100%
14.3 - 20	Small	362 - 512	L	0		0	0%	100%
20 - 40	Medium	512 - 1024	D	0		0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0		0	0%	100%
	Bedrock		BDRK	0		0	0%	100%
			Totals	100		100	100%	100%

	NOTES	rb 1.46				llob/bkf		ieow/ws		ŢĘ.			reow												
	ELEVATION (FEET)	103.68	100.29	96.52	95.38	94.74	93.91	91.30	90.50	90.53	90.62	90.62	90.98	91.88	93.50	93.86	94.77	94.64	95.27	96.54	60.66	69.66	69.66	99.28	
Wade Patton	FS (FFFT)	1.89	5.28	9.06	10.19	10.83	11.66	14.27	15.07	15.04	14.95	14.95	14.59	13.69	12.07	11.71	10.80	10.93	10.30	9.03	6.48	5.88	5.88	6.29	
Amanda Todd and Wade Patton Yaddin Pee-Dee Little Bugaboo Reach 2 0.38 10.205 4462 CS 7 POOL	HI (FFFT)	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	105.57	
Field Crew: Hiver Basin: Watershed: Stream Reach: Drainage Area: Oate: Station: Feature:	STATION (FEET)	0+000	0+09.5	0+19.5	0+27.0	0+32.8	0+34.5	0+35.5	0+36.8	0+39.5	0+44.0	0+48.0	0+49.5	0+20.0	0+51.0	0+52.0	0+53.5	0+56.5	0+61.0	0+65.5	0+71.0	0+74.0	0+82.0	0+92.0	

	Width	Hydraulic Geometry Denth	etry
1	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0:0
	1.7	0.8	0.7
	1.0	3.4	2.1
	1.3	4.2	5.0
	2.7	4.2	11.4
	4.5	4.1	18.7
	4.0	4.1	16.5
	1.5	3.8	5.9
	0.5	2.9	1.7
	1.0	5. 5.	2.1
	1.0	6.0	=
	1.5	0.0	9.0
5 F	20.7		65.8
J.	SUMMARY DATA (TOB)	(TA (TOB)	
	A(BKF)	65.8	
	W(BKF)	20.7	
	Max d	4.2	
	Mean d	3.2	
ı			

StreamSurveyLBCmain2.xls

				PEBBLE	COUNT				
Site: LBC							4/5/2005		
Party: Amai	nda Todd and W	ade Patton					CS#7		
					Particle Cou	nt	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Inches	Particle	Millimeter	.,	Riffle			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	16			16	13%	13%
	Very Fine	.062125	S	2			2	2%	15%
	Fine	.12525	Α	0			0	0%	15%
	Medium	.2550	N	8			8	7%	22%
	Coarse	.50 - 1.0	D	52			52	44%	66%
.0408	Very Coarse	1.0 - 2.0	S	27			27	23%	88%
.0816	Very Fine	2.0 - 4.0		1			1	1%	89%
.1622	Fine	4.0 - 5.7	G	0			0	0%	89%
.2231	Fine	5.7 - 8.0	R	3			3	3%	92%
.3144	Medium	8.0 - 11.3	Α	1			1	1%	92%
.4463	Medium	11.3 - 16.0	V	3			3	3%	95%
.6389	Coarse	16.0 - 22.6	E	3			3	3%	97%
.89 - 1.26	Coarse	22.6 - 32.0	L	1			1	1%	98%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0			0	0%	98%
1.77 - 2.5	Very Coarse	45.0 - 64.0		2			2	2%	100%
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	119			119	100%	100%

StreamSurveyLBCmain2.xls

90

d Wade Patton							
w: Amanda Todd an	sin: Yadkin Pee-Dee	ed: Little Bugaboo	leach: Reach 2	350	1/10/2005	06+9	CSB
Field Crev	River Bas	Watershe	Stream Re	Drainage Area	Date:	Station:	Feature:

STATION HI FS ELEVATION NOTES 0+0.0.0 105.57 3.89 101.68 RB 3.56 0+10.0 105.57 4.95 100.62 RB 3.56 0+12.2 105.57 5.60 99.77 Wipa 0+22.6 105.57 5.60 99.77 Wipa 0+22.6 105.57 11.23 94.34 Wipa 0+32.6 105.57 11.23 94.21 LBKF 0+35.6 105.57 11.28 94.21 LBKF 0+43.6 105.57 14.22 91.35 1ECOW/NS 0+43.6 105.57 14.22 91.35 1ECOW/NS 0+43.6 105.57 15.49 90.04 REOW 0+43.6 105.57 15.49 90.04 REOW 0+43.6 105.57 15.49 90.04 REOW 0+51.0 105.57 15.49 90.04 REOW 0+52.6 105.57 14.34 91.23 REOW <tr< th=""><th>River Basin: Watershed: Stream Reach: Drainage Area: Date: Station:</th><th>Yarkin Pee-Dee Little Bugaboo Reach 2 3.45 11 /102005 6+30 CS 8</th><th></th><th></th><th></th></tr<>	River Basin: Watershed: Stream Reach: Drainage Area: Date: Station:	Yarkin Pee-Dee Little Bugaboo Reach 2 3.45 11 /102005 6+30 CS 8			
(FEE)	STATION	ΞĮ	FS	ELEVATION	NOTES
105.57 4.95 100.62 105.57 8.60 99.87 105.57 10.51 95.00 105.57 11.23 94.34 105.57 11.28 94.24 105.57 11.28 92.74 105.57 11.28 90.74 105.57 14.22 91.35 105.57 15.49 90.02 105.57 15.49 90.02 105.57 15.59 90.04 105.57 11.28 90.04 105.57 11.36 90.05 105.57	0+0000	(ree1)	(FEE)	(FEET)	RB 3 55
105.57 5.60 99.97 105.5	0+10.0	105.57	4.95	100.62	
105.57 9.97 95.60 105.57 10.51 95.06 105.57 11.23 94.21 105.57 11.28 92.74 105.57 14.95 90.62 105.57 14.95 90.62 105.57 15.43 90.04 105.57 15.43 90.04 105.57 15.53 90.04 105.57 15.63 90.04 105.57 15.63 90.04 105.57 11.73 92.23 106.57 11.73 92.23 105.57 11.73 92.84 105.57 11.73 92.84 105.57 11.75 92.84 105.57 11.36 94.21 105.57 6.64 98.93 105.57 6.90 97.57 105.57 6.84 98.93	0+12.5	105.57	5.60	76.99	wfpa
105.57 10.51 95.06 105.57 11.23 94.34 105.57 11.38 94.34 105.57 11.38 92.74 105.57 14.22 91.35 105.57 14.36 90.02 105.57 15.43 90.08 105.57 15.55 90.02 105.57 15.55 90.04 105.57 15.55 90.04 105.57 11.53 90.04 105.57 11.73 91.37 105.57 11.73 91.37 105.57 11.73 91.37 105.57 11.73 91.37 105.57 11.36 94.21 105.57 6.64 98.93 105.57 6.90 98.67 105.57 105.57 97.86 105.57 105.57 97.86	0+22.8	105.57	9.97	95.60	
105.57 11.23 94.34 105.57 11.26 94.21 105.57 12.83 92.74 105.57 12.83 92.74 105.57 12.83 90.62 105.57 15.53 90.02 105.57 15.53 90.02 105.57 15.53 90.02 105.57 15.53 90.02 105.57 15.53 90.02 105.57 15.08 90.49 105.57 105.57 11.73 92.42 105.57 105.57 90.02 97.57 105.57 90.02 97.57 105.57 90.02 97.57 105.57 6.64 98.93 105.57 6.90 99.35 11.05.57 6.90 99.35 11.05.57 105.57 99.93 105.57 105.57 99.93 105.57 105.57 99.93 105.57 105.57 99.93 105.57 105.57 99.93 105.57 105.57 99.93 105.57 105.57 99.93 105.57 105.57 99.93 105.57 105.57 99.93 1	0+29.6	105.57	10.51	95.06	
105.57 11.36 94.21 105.57 16.83 92.74 105.57 14.22 91.34 105.57 16.54 90.62 105.57 15.43 90.04 105.57 15.53 90.04 105.57 15.53 90.04 105.57 15.68 90.04 105.57 15.68 90.04 105.57 15.08 90.04 105.57 15.08 90.04 105.57 106.57 11.73 92.84 105.57 105.5	0+32.0	105.57	11.23	94.34	
105.57 12.83 92.74 105.57 14.22 91.35 105.57 14.22 91.35 105.57 14.22 91.35 105.57 14.22 91.35 105.57 14.22 90.04 105.57 15.53 90.04 105.57 14.20 91.23 105.57 14.20 91.23 105.57 14.20 91.37 105.57 11.36 90.45 105.57 105	0+35.5	105.57	11.36	94.21	LBKF
105.57 14.22 91.35 105.57 14.26 90.02 105.57 15.43 90.02 105.57 15.43 90.02 105.57 15.55 90.02 105.57 15.53 90.02 105.57 15.03 90.49 105.57 15.03 90.49 105.57 14.20 91.37 105.57 11.73 92.42 105.57 11.73 92.42 105.57 105	0+38.0	105.57	12.83	92.74	
105.57 14.95 90.62 105.57 15.43 90.14 105.57 15.43 90.14 105.57 15.59 90.04 105.57 15.53 90.00 105.57 15.53 90.00 105.57 15.00 90.00 105.57 15.00 90.00 105.57 105.	0+43.0	105.57	14.22	91.35	
105.57 15.43 90.14 105.57 15.49 90.08 105.57 15.53 90.04 105.57 15.53 90.04 105.57 14.30 91.23 105.57 14.20 91.37 105.57 11.75 92.84 105.57 11.75 92.84 105.57 11.75 92.84 105.57 10.55 94.57 105.57 10.55 94.57 105.57 6.64 98.93 105.57 6.05 98.57 105.57 6.05 98.57 105.57 6.05 98.57	0+43.8	105.57	14.95	90.62	LEOW/WS
105.57 15.49 90.08 105.57 15.55 90.02 105.57 15.53 90.04 105.57 15.08 90.49 105.57 14.20 91.23 105.57 14.20 91.23 105.57 14.20 91.23 105.57 11.73 92.42 105.57 11.73 92.42 105.57	0+44.0	105.57	15.43	90.14	
105.57 15.55 90.02 105.57 15.53 90.04 105.57 15.08 90.48 105.57 14.20 91.23 105.57 13.15 92.42 105.57 11.73 92.42 105.57 11.73 93.84 105.57 6.64 98.83 105.57 6.64 98.83 105.57 6.90 98.67	0+46.5	105.57	15.49	90.08	
105.57 15.53 90.04 105.57 15.08 90.49 105.57 14.20 91.23 105.57 11.73 92.84 105.57 11.73 93.84 105.57 8.00 97.57 105.57 6.64 98.93 105.57 6.90 98.57	0+49.5	105.57	15.55	90.02	
105.57 15.08 90.48 105.57 14.20 91.23 105.57 14.20 91.37 105.57 11.73 92.42 105.57 11.73 93.84 105.57 8.00 97.57 105.57 6.64 98.93 105.57 6.90 96.57 105.57 7.61 97.98	0+51.0	105.57	15.53	90.04	
105.57 14.34 91.23 105.57 14.20 91.37 105.57 13.15 92.42 105.57 11.73 92.84 105.57 8.00 97.57 105.57 6.64 98.83 105.57 6.90 98.67	0+52.5	105.57	15.08	90.49	REOW
106.57 14.20 91.37 105.57 13.15 92.42 105.57 11.73 93.84 105.57 11.36 94.21 105.57 8.00 97.57 105.57 6.64 98.93 105.57 6.90 96.67 105.57 7.61 97.96	0+52.8	105.57	14.34	91.23	
105.57 13.15 92.42 105.57 11.73 93.84 105.57 11.36 94.21 105.57 8.00 97.57 105.57 6.64 98.93 105.57 7.69 98.67	0+55.5	105.57	14.20	91.37	
105.57 11.73 93.84 105.57 11.36 94.21 105.57 8.00 97.57 105.57 6.64 98.83 105.57 6.90 98.67	0+58.0	105.57	13.15	92.42	
105.57 11.36 94.21 105.57 8.00 97.57 105.57 6.64 98.87 105.57 6.90 98.67 105.57 7.61 97.96	0+60.5	105.57	11.73	93.84	
105.57 8.00 97.57 105.57 6.64 98.93 105.57 6.90 98.67 105.57 7.61 97.96	0+64.0	105.57	11.36	94.21	RBKF
105.57 6.64 98.93 105.57 6.90 98.67 105.57 7.61 97.96	0+69+0	105.57	8.00	97.57	
105.57 6.90 98.67 105.57 7.61 97.96	0+72.0	105.57	6.64	98.93	
105.57 7.61 97.96	0+83.0	105.57	6.90	98.67	
	1+00.0	105.57	7.61	97.96	RB 7.55

BANKFULL/TOB
Hydraulic Geometry
Depth
(Feet)
0.0
1.5
2.9
3.6
4.1
4.1
4.1
4.2
2.8
3.7
3.7
3.7
0.0
0.0
0.0

		nyuranını Geometry	>
	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	3.6	1.5	2.6
	4.0	2.9	8.7
	0.8	3.6	2.6
	0.2	4.1	0.8
	2.5	4.1	10.3
	3.0	4.2	12.5
	1.5	4.2	6.3
	1,5	3.7	5.9
	0.3	3.0	1.0
	2.7	2.8	7.9
	2.5	1.8	5.8
	2.5	0.4	2.7
	3.5	0.0	0.6
TOTALS	28.5	3-21-A	67.5
	100000000000000000000000000000000000000		
	SUMMARY DALA (BANKFUL)	4 (BANKFULL)	
A(BKF)	67.5	W(FPA)	87.5
W(BKF)	28.5	Slope	0.007
Max d	4.2	Sinuosity	
Mean d	2.4	Area= A	A
O/M	12.0	Width= W	W
Entrenchment	3.1	Depth= D	- a
Stream Type	O	Bankfull= BKF	BKF
Area fr	Area from Rural Regional Curve	Curve	50.42

Arbitrary Elevation (ft)

				PEBBLE	COUNT			
Site: LBC						4/5/2005		
Party: Ama	nda Todd and W	ade Patton				_CS#8		
			,		Particle Count			
Inches	Particle	Millimeter		Riffle		Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0		0	0%	0%
	Very Fine	.062125	S	2		2	2%	2%
	Fine	.12525	Α	10		10	10%	12%
	Medium	.2550	N	31		31	31%	43%
	Coarse	.50 - 1.0	D	1		1	1%	44%
.0408	Very Coarse	1.0 - 2.0	S	5		5	5%	49%
.0816	Very Fine	2.0 - 4.0		0		0	0%	49%
.1622	Fine	4.0 - 5.7	G	1		1	1%	50%
.2231	Fine	5.7 - 8.0	R	0		0	0%	50%
.3144	Medium	8.0 - 11.3	Α	5		5	5%	55%
.4463	Medium	11.3 - 16.0	V	9		9	9%	64%
.6389	Coarse	16.0 - 22.6	E	7		7	7%	71%
.89 - 1.26	Coarse	22.6 - 32.0	L	16		16	16%	87%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	5		5	5%	92%
1.77 - 2.5	Very Coarse	45.0 - 64.0		6		6	6%	98%
2.5 - 3.5	Small	64 - 90	С	2		2	2%	100%
3.5 - 5.0	Small	90 - 128	0	0		0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0		0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0		0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0		0	0%	100%
14.3 - 20	Small	362 - 512	L	0		0	0%	100%
20 - 40	Medium	512 - 1024	ם	0		0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0		0	0%	100%
	Bedrock		BDRK	0		0	0%	100%
			Totals	100		100	100%	100%

Particle Size Distribution Little Bugaboo Creek

	Run Slope 0.0054 0.0042		Run 8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/
	Hun Length 37 53		# Bun # # # # # # # # # # # # # # # # # # #
	Girde Length	0.0066	Glido 0.00066 0.00066 0.00066 0.00066 0.00066 0.00483 0.8483 0.8483
	Gide Length	~	Chide C inde 7 7 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9
NOTE	Riffie Slope 0.0466 0.0189	0.0155	Rittle Signar 0.00488 0.00488 0.00488 0.00488 0.00488 0.00488 0.00248 1.3186 4.8069 2.3813 3.2813 3.30 0.0048 0.00
ELEV 100.00	Riffle 28 28 27 27	5 5	Riffle Leaning 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
s) L	Slope Slope 0.0101	0.0004	Pool Silone O 0004 O 000
102.29	Max Pool Depth	ଖ ଓ ଓ ଜଣ	Max P. Cod
88 229	Pool Length 75	4 6 4	Pood 1
STA 11BM #1	104 104	8	inal Profile (Cross-Vane)
	Bk HVBk Hi. 100 100 100 100 100 100 100 100 100 10	388888888888888888888888888888888888888	ttud
	田 102.29 102.29 102.29 102.29 102.29 102.29 102.29 102.29	102.28 102.29 102.29 102.29 102.29 102.29 102.29 102.29 102.29 102.29 102.29	± wat 5
	10B Motes 95,33 HR 92,00 e3.2 92,00 e3.2 91.99 HRU 90,80 HR 90,80 HP 90,69 M 90,69 M 90,69 M 90,72 M 90,72 M	90.39 M. 90.16 CV 90.16 COV 90.16 MP 89.94 MP 89.51 MP 89.51 MP 89.19 MP 89.29 MR 88.75 MP 88.74 MP 88.74 MP 88.74 MP 88.74 MP 88.74 MP 88.74 MP 88.74 MP 88.74 MP	3
	10b (FS) 9.96 10.89 10.29 10.29 11.10 11.10 11.60 11.60 11.60	1 90 1 1 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
	BKF 99.233 91.45 91.36 90.23 90.23 90.69 90.39	90.39 90.16 90.16 90.16 89.94 89.19 89.19 89.29 89.29 89.29 89.29 89.17 89.17 89.17	• /
	BKE (FS) 9.96 10.29 10.29 11.10 11.10 11.61 11.60 11.60 11.60	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	"
Patton	1	89.00 88.89 88.13 88.17 88.11 88.77 87.77 87.77 87.77 87.74 87.75 87.74 87.75 87.74 87.75	The state of the s
and Wade P	WS (FS) 11.08 12.44 12.64 12.64 13.15 13.35 13.32 13.30 13.30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Amenda Todd and Wade P Yadkin Pee-Dee Tilbutany to LBC 14d 46/2005 LONGITUDINAL PROPE	IW 90.21 90.21 89.16 89.36 88.36 88.36 88.36 88.36 88.04 87.34	88.10 87.10 87.10 87.10 87.09 86.52 86.52 86.52 86.52 86.54	22.11 1.13 2.80 32.00 39.00 39.00 38.00 36.00
	TW (FS) 12.08 12.08 12.88 12.88 12.88 12.84 13.84 13.84 14.14 14.15 14.15 14.15	14.19 15.19 15.19 15.20 15.20 15.20 16.60 15.50 15.50 15.50 15.50 16.00 16.00 16.00	3
Field Crew: River Basin: Stream Reach: Oralinge Area: Date: Description:	Station 0+00.0 0+00.0 0+63.0 0+63.0 0+65.0 1+45.0 1+45.0 1+64.0 1+64.0 1+64.0 1+64.0 1+64.0 1+64.0	1486.0 2446.0 24	1 L X 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

807 × 108 ★ 807 × 108

	4 4 3
River Basin:	Fackin Pec-Use
Watershed:	Little Bugsboo Creek
Stream Reach:	Longitudinal Reach 1
Drainage Area:	1.40
Date:	4/6/2005
Station:	***
Feature:	CS 1/Rittle)

DO NOT TIE INTO LONGITUDINAL

River Basin: Watershed: Stream Reach: Drainage Area: Date: Station:	Yadkin Pee-Dee Little Bugaboo Creek Longtudinal Reach 1 140 4/6/2005 NA CS 1 (Fiffle)	bee koo Creek Reach 1		
STATION	HI (FEET)	FS	ELEVATION	NOTES
0+00-0	100.00	3.80	96.20	RB 3.61
0+10.0	100.00	4 60	95.40	
0+22.5	100.00	5.73	94.27	
0+57.0	100.00	6.34	93.66	
0+31.0	100.00	6.67	93.33	
0+33.5	100.00	7.13	52.87	LBKF
0+35.0	100.00	7.41	92.59	
0+36.3	100.00	7.72	92.28	
0+36.9	100.00	8 04	91.96	
0.438.0	100.00	8.35	91.65	
0+39.0	100.00	9.07	80.93	
0.439.9	100.00	66 6	90.01	LEOW
0+41.0	100.00	10.03	89.97	ΔL
0+42.2	100,00	9.94	90.06	
0+43.2	100.00	9.63	90.37	REOW/WS
0+43.8	100.00	8.68	91.32	
0+45.5	100.00	8.43	91.57	
0.146.0	100.00	8.25	91.75	
0+47.0	100.00	7.97	92.03	
0+48.3	100.00	7.30	92.70	
0+53.0	100.00	7.13	92.87	RBKF
0.09+0	100.00	7.01	92.99	
0+75.9	100 00	6.84	93.16	RB 6.39

	Width	Depth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	1.5	03	0.2
	<u></u>	90	90
	9.0	9 0	0.5
	1.1	1.2	1.2
	1.0	6.1	1.6
	6:0	2.9	25.5
	1.1	2.5	3.2
	2	89.	460
	1.0	25.55	2.7
	9.0	1.6	5
	1.7	13	4.5
	9'0	11	9.0
	1.0	8.0	1.0
	છ લો	0.2	5.
	3.7	0.0	0.3
TOTALS	19.5		22.1
MUS	SUMMARY DATA (BANKFUI	15	(80)
A(BKF)	22.1	W(FPA)	>75
W(BKF)	19.5	Slope	0.0065
Maxd	2.90	Sinuosity	
Mean d	1.13	Area=	A
D/M	172	Width=	×
Entrenchment	90 60 A	Depth=	۵

()(0)(22	W(FPA) >75	
W(BKF)	19.51	Slope 0.0065	S
Maxd	2.90	Sinuosity	
Mean d	1.13	Area= A	
M/D	17.2	Width= W	
Entrenchment	20 00 ×	Depth= D	
Stream Type	O	Banktull= BKF	

WS 9.18 9.83 0.0065

TW 9.41 10.19 0.0078

SLOPE 0+00.0 1+00.0

				PEBBL	E COUNT				
Site: Tribut							3/24/2005		
Party: Ama	anda Todd and f	Russel Barbot	ur				Riffle CS#1		
			way	·	Particle Cour	nt		,	·
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0			0	0%	0%
	Very Fine	.062125	S	5			5	5%	5%
	Fine	.12525	Α	16	1		16	16%	21%
	Medium	.2550	N	17			17	17%	38%
	Coarse	.50 - 1.0	D	0			0	0%	38%
.0408	Very Coarse	1.0 - 2.0	S	4			4	4%	42%
.0816	Very Fine	2.0 - 4.0		9			9	9%	51%
.1622	Fine	4.0 - 5.7	G	14			14	14%	65%
.2231	Fine	5.7 - 8.0	R	7			7	7%	72%
.3144	Medium	8.0 - 11.3	Α	15			15	15%	87%
.4463	Medium	11.3 - 16.0	٧	9			9	9%	96%
.6389	Coarse	16.0 - 22.6	E	3			3	3%	99%
.89 - 1.26	Coarse	22.6 - 32.0	L	1			1	1%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0			0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0			0	0%	100%
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	100			100	100%	100%

				PEBBL	E COUNT	· · · · · · · · · · · · · · · · · · ·		***************************************	
Site: Tribut							3/24/2005		
Party: Ama	anda Todd and I	Russel Barbo	ur				Riffle CS#2		
				***************************************	² article Cou	nt			
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	7			7	7%	7%
	Very Fine	.062125	S	13			13	13%	20%
	Fine	.12525	Α	2			2	2%	22%
	Medium	.2550	N	7			7	7%	29%
	Coarse	.50 - 1.0	D	1			1	1%	30%
.0408	Very Coarse	1.0 - 2.0	S	1			1	1%	31%
.0816	Very Fine	2.0 - 4.0		3			3	3%	34%
.1622	Fine	4.0 - 5.7	G	3			3	3%	37%
.2231	Fine	5.7 - 8.0	R	3			3	3%	40%
.3144	Medium	8.0 - 11.3	А	16			16	16%	56%
.4463	Medium	11.3 - 16.0	ν	6			6	6%	62%
.6389	Coarse	16.0 - 22.6	E	7			7	7%	69%
.89 - 1.26	Coarse	22.6 - 32.0	L	9			9	9%	78%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	13			13	13%	91%
1.77 - 2.5	Very Coarse	45.0 - 64.0		6			6	6%	97%
2.5 - 3.5	Small	64 - 90	С	3			3	3%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0]		0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
			Totals	100			100	100%	100%

PEBBLE COUNT									
Site: Tributary to LBC							3/24/2005		
Party: Amanda Todd and Russel Barbour						Pod	Pool CS#3		
Particle Count									
Inches	Particle	Millimeter		Riffle		T	otal No.	Item %	% Cumulative
	Silt/Clay	< 0.062	s/c	12	<u> </u>		12	12%	12%
	Very Fine	.062125	S	0			0	0%	12%
	Fine	.12525	Α	1			1	1%	13%
	Medium	.2550	N	25			25	25%	38%
	Coarse	.50 - 1.0	D	9			9	9%	47%
.0408	Very Coarse	1.0 - 2.0	S	6			6	6%	53%
.0816	Very Fine	2.0 - 4.0		18			18	18%	71%
.1622	Fine	4.0 - 5.7	G	13			13	13%	84%
.2231	Fine	5.7 - 8.0	R	3			3	3%	87%
.3144	Medium	8.0 - 11.3	A	8			8	8%	95%
.4463	Medium	11.3 - 16.0	V	0			0	0%	95%
.6389	Coarse	16.0 - 22.6	E	3			3	3%	98%
.89 - 1.26	Coarse	22.6 - 32.0	L	2			2	2%	100%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0			0	0%	100%
1.77 - 2.5	Very Coarse	45.0 - 64.0		0			0	0%	100%
2.5 - 3.5	Small	64 - 90	С	0			0	0%	100%
3.5 - 5.0	Small	90 - 128	0	0			0	0%	100%
5.0 - 7.1	Large	128 - 180	В	0			0	0%	100%
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%
14.3 - 20	Small	362 - 512	L	0			0	0%	100%
20 - 40	Medium	512 - 1024	D	0			0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%
	Bedrock		BDRK	0			0	0%	100%
Totals 100 100 100%							100%	100%	

| First Central | Managed | Cock and Wake Pattern | Managed | Cock and Wake Pattern | Managed | Cock and Wake Pattern | Managed | Cock and Managed

TOTALS		With the control of t	TOTALS 31.0
--------	--	--	-------------

				PEBBL	E COUNT					
Site: Tributary to LBC							3/24/2005			
Party: Amanda Todd and Russel Barbour						Pool CS#4				
					Particle Cou	nt				
Inches	Particle	Millimeter		Riffle			Total No.	Item %	% Cumulative	
	Silt/Clay	< 0.062	S/C	10			10	10%	10%	
	Very Fine	.062125	S	7			7	7%	17%	
}	Fine	.12525	Α	5			5	5%	22%	
	Medium	.2550	N	30			30	29%	51%	
	Coarse	.50 - 1.0	D	6			6	6%	57%	
.0408	Very Coarse	1.0 - 2.0	S	7			7	7%	64%	
.0816	Very Fine	2.0 - 4.0		4			4	4%	68%	
.1622	Fine	4.0 - 5.7	G	7			7	7%	75%	
.2231	Fine	5.7 - 8.0	R	4			4	4%	78%	
.3144	Medium	8.0 - 11.3	Α	3			3	3%	81%	
.4463	Medium	11.3 - 16.0	٧	0			0	0%	81%	
.6389	Coarse	16.0 - 22.6	Ε	3			3	3%	84%	
.89 - 1.26	Coarse	22.6 - 32.0	L	4			4	4%	88%	
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	7	İ		7	7%	95%	
1.77 - 2.5	Very Coarse	45.0 - 64.0		2			2	2%,	97%	
2.5 - 3.5	Small	64 - 90	С	1		/·····································	1	1%	98%	
3.5 - 5.0	Small	90 - 128	0	1	1		1	1%	99%	
5.0 - 7.1	Large	128 - 180	В	1			1	1%	100%	
7.1 - 10.1	Large	180 - 256	L	0			0	0%	100%	
10.1 - 14.3	Small	256 - 362	В	0			0	0%	100%	
14.3 - 20	Small	362 - 512	L	0			0	0%	100%	
20 - 40	Medium	512 - 1024	D	0			0	0%	100%	
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0			0	0%	100%	
	Bedrock		BDRK	0			0	0%	100%	
			Totals	102			102	100%	100%	

